{"title":"基于深度学习的真实网络视频人脸识别","authors":"Z. Li, Y. Tie, L. Qi","doi":"10.1109/ISNE.2019.8896630","DOIUrl":null,"url":null,"abstract":"Though current face recognition systems perform well in relatively constrained scenes, they are often affected by secondary creation of netizens, serious image blurring and abundant posture changes in real-world Internet videos. Focusing on these problems, we propose a face recognition model names Internet Video-based Face Recognition Network (IVFRNet) based on deep learning for real Internet videos. And we propose a weighted loss function to enhance the ability of learned features. To test the model, we construct a small-scale real-world Internet video-based face dataset. The experiment results show that our method outperforms the origin method.","PeriodicalId":405565,"journal":{"name":"2019 8th International Symposium on Next Generation Electronics (ISNE)","volume":"160 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Face Recognition in Real-world Internet Videos Based on Deep Learning\",\"authors\":\"Z. Li, Y. Tie, L. Qi\",\"doi\":\"10.1109/ISNE.2019.8896630\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Though current face recognition systems perform well in relatively constrained scenes, they are often affected by secondary creation of netizens, serious image blurring and abundant posture changes in real-world Internet videos. Focusing on these problems, we propose a face recognition model names Internet Video-based Face Recognition Network (IVFRNet) based on deep learning for real Internet videos. And we propose a weighted loss function to enhance the ability of learned features. To test the model, we construct a small-scale real-world Internet video-based face dataset. The experiment results show that our method outperforms the origin method.\",\"PeriodicalId\":405565,\"journal\":{\"name\":\"2019 8th International Symposium on Next Generation Electronics (ISNE)\",\"volume\":\"160 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 8th International Symposium on Next Generation Electronics (ISNE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISNE.2019.8896630\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 8th International Symposium on Next Generation Electronics (ISNE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISNE.2019.8896630","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Face Recognition in Real-world Internet Videos Based on Deep Learning
Though current face recognition systems perform well in relatively constrained scenes, they are often affected by secondary creation of netizens, serious image blurring and abundant posture changes in real-world Internet videos. Focusing on these problems, we propose a face recognition model names Internet Video-based Face Recognition Network (IVFRNet) based on deep learning for real Internet videos. And we propose a weighted loss function to enhance the ability of learned features. To test the model, we construct a small-scale real-world Internet video-based face dataset. The experiment results show that our method outperforms the origin method.