{"title":"实时任意视频风格转换","authors":"Xingyu Liu, Zongxing Ji, Piao Huang, Tongwei Ren","doi":"10.1145/3444685.3446301","DOIUrl":null,"url":null,"abstract":"Video style transfer aims to synthesize a stylized video that has similar content structure with a content video and is rendered in the style of a style image. The existing video style transfer methods cannot simultaneously realize high efficiency, arbitrary style and temporal consistency. In this paper, we propose the first real-time arbitrary video style transfer method with only one model. Specifically, we utilize a three-network architecture consisting of a prediction network, a stylization network and a loss network. Prediction network is used for extracting style parameters from a given style image; Stylization network is for generating the corresponding stylized video; Loss network is for training prediction network and stylization network, whose loss function includes content loss, style loss and temporal consistency loss. We conduct three experiments and a user study to test the effectiveness of our method. The experimental results show that our method outperforms the state-of-the-arts.","PeriodicalId":119278,"journal":{"name":"Proceedings of the 2nd ACM International Conference on Multimedia in Asia","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Real-time arbitrary video style transfer\",\"authors\":\"Xingyu Liu, Zongxing Ji, Piao Huang, Tongwei Ren\",\"doi\":\"10.1145/3444685.3446301\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Video style transfer aims to synthesize a stylized video that has similar content structure with a content video and is rendered in the style of a style image. The existing video style transfer methods cannot simultaneously realize high efficiency, arbitrary style and temporal consistency. In this paper, we propose the first real-time arbitrary video style transfer method with only one model. Specifically, we utilize a three-network architecture consisting of a prediction network, a stylization network and a loss network. Prediction network is used for extracting style parameters from a given style image; Stylization network is for generating the corresponding stylized video; Loss network is for training prediction network and stylization network, whose loss function includes content loss, style loss and temporal consistency loss. We conduct three experiments and a user study to test the effectiveness of our method. The experimental results show that our method outperforms the state-of-the-arts.\",\"PeriodicalId\":119278,\"journal\":{\"name\":\"Proceedings of the 2nd ACM International Conference on Multimedia in Asia\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2nd ACM International Conference on Multimedia in Asia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3444685.3446301\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2nd ACM International Conference on Multimedia in Asia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3444685.3446301","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Video style transfer aims to synthesize a stylized video that has similar content structure with a content video and is rendered in the style of a style image. The existing video style transfer methods cannot simultaneously realize high efficiency, arbitrary style and temporal consistency. In this paper, we propose the first real-time arbitrary video style transfer method with only one model. Specifically, we utilize a three-network architecture consisting of a prediction network, a stylization network and a loss network. Prediction network is used for extracting style parameters from a given style image; Stylization network is for generating the corresponding stylized video; Loss network is for training prediction network and stylization network, whose loss function includes content loss, style loss and temporal consistency loss. We conduct three experiments and a user study to test the effectiveness of our method. The experimental results show that our method outperforms the state-of-the-arts.