实时任意视频风格转换

Xingyu Liu, Zongxing Ji, Piao Huang, Tongwei Ren
{"title":"实时任意视频风格转换","authors":"Xingyu Liu, Zongxing Ji, Piao Huang, Tongwei Ren","doi":"10.1145/3444685.3446301","DOIUrl":null,"url":null,"abstract":"Video style transfer aims to synthesize a stylized video that has similar content structure with a content video and is rendered in the style of a style image. The existing video style transfer methods cannot simultaneously realize high efficiency, arbitrary style and temporal consistency. In this paper, we propose the first real-time arbitrary video style transfer method with only one model. Specifically, we utilize a three-network architecture consisting of a prediction network, a stylization network and a loss network. Prediction network is used for extracting style parameters from a given style image; Stylization network is for generating the corresponding stylized video; Loss network is for training prediction network and stylization network, whose loss function includes content loss, style loss and temporal consistency loss. We conduct three experiments and a user study to test the effectiveness of our method. The experimental results show that our method outperforms the state-of-the-arts.","PeriodicalId":119278,"journal":{"name":"Proceedings of the 2nd ACM International Conference on Multimedia in Asia","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Real-time arbitrary video style transfer\",\"authors\":\"Xingyu Liu, Zongxing Ji, Piao Huang, Tongwei Ren\",\"doi\":\"10.1145/3444685.3446301\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Video style transfer aims to synthesize a stylized video that has similar content structure with a content video and is rendered in the style of a style image. The existing video style transfer methods cannot simultaneously realize high efficiency, arbitrary style and temporal consistency. In this paper, we propose the first real-time arbitrary video style transfer method with only one model. Specifically, we utilize a three-network architecture consisting of a prediction network, a stylization network and a loss network. Prediction network is used for extracting style parameters from a given style image; Stylization network is for generating the corresponding stylized video; Loss network is for training prediction network and stylization network, whose loss function includes content loss, style loss and temporal consistency loss. We conduct three experiments and a user study to test the effectiveness of our method. The experimental results show that our method outperforms the state-of-the-arts.\",\"PeriodicalId\":119278,\"journal\":{\"name\":\"Proceedings of the 2nd ACM International Conference on Multimedia in Asia\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2nd ACM International Conference on Multimedia in Asia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3444685.3446301\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2nd ACM International Conference on Multimedia in Asia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3444685.3446301","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

视频风格转换旨在合成与内容视频具有相似内容结构的程式化视频,并以样式图像的样式呈现。现有的视频风格转换方法不能同时实现高效率、任意风格和时间一致性。在本文中,我们提出了第一种仅使用一个模型的实时任意视频风格传输方法。具体来说,我们利用了一个由预测网络、风格化网络和损失网络组成的三网络架构。使用预测网络从给定的样式图像中提取样式参数;风格化网络用于生成相应的风格化视频;损失网络用于训练预测网络和风格化网络,其损失函数包括内容损失、风格损失和时间一致性损失。我们进行了三个实验和一个用户研究来测试我们方法的有效性。实验结果表明,该方法优于目前的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Real-time arbitrary video style transfer
Video style transfer aims to synthesize a stylized video that has similar content structure with a content video and is rendered in the style of a style image. The existing video style transfer methods cannot simultaneously realize high efficiency, arbitrary style and temporal consistency. In this paper, we propose the first real-time arbitrary video style transfer method with only one model. Specifically, we utilize a three-network architecture consisting of a prediction network, a stylization network and a loss network. Prediction network is used for extracting style parameters from a given style image; Stylization network is for generating the corresponding stylized video; Loss network is for training prediction network and stylization network, whose loss function includes content loss, style loss and temporal consistency loss. We conduct three experiments and a user study to test the effectiveness of our method. The experimental results show that our method outperforms the state-of-the-arts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Storyboard relational model for group activity recognition Objective object segmentation visual quality evaluation based on pixel-level and region-level characteristics Multiplicative angular margin loss for text-based person search Distilling knowledge in causal inference for unbiased visual question answering A large-scale image retrieval system for everyday scenes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1