基于集合领导模型的欠税检测

A. Su, Zhimin He, Junjian Su, Yan Zhou, Yun Fan, Yuan Kong
{"title":"基于集合领导模型的欠税检测","authors":"A. Su, Zhimin He, Junjian Su, Yan Zhou, Yun Fan, Yuan Kong","doi":"10.1109/ICWAPR.2018.8521362","DOIUrl":null,"url":null,"abstract":"Machine learning technique has been widely applied in many applications, e.g., stock prediction and image classification. In this paper, we construct an ensemble model to detect whether there are tax arrears in enterprises. Tax department can use this model to detect tax arrears in advance, avoiding tax arrears. The ensemble learning model consists of six base classifiers, i.e., Multi-Layer Perceptron(MLP), k-Nearest Neighbor (KNN), Random Forest(RF), Extremely randomized Trees (ET), Gradient Tree Boosting (GTB) and XGBoost. Soft voting with weight is used to combine the base classifiers. Experimental results show satisfying performance of the proposed method on the tax dataset of N anhai, Foshan, China in 2015 and 2016.","PeriodicalId":385478,"journal":{"name":"2018 International Conference on Wavelet Analysis and Pattern Recognition (ICWAPR)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Detection of Tax Arrears Based on Ensemble Leaering Model\",\"authors\":\"A. Su, Zhimin He, Junjian Su, Yan Zhou, Yun Fan, Yuan Kong\",\"doi\":\"10.1109/ICWAPR.2018.8521362\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Machine learning technique has been widely applied in many applications, e.g., stock prediction and image classification. In this paper, we construct an ensemble model to detect whether there are tax arrears in enterprises. Tax department can use this model to detect tax arrears in advance, avoiding tax arrears. The ensemble learning model consists of six base classifiers, i.e., Multi-Layer Perceptron(MLP), k-Nearest Neighbor (KNN), Random Forest(RF), Extremely randomized Trees (ET), Gradient Tree Boosting (GTB) and XGBoost. Soft voting with weight is used to combine the base classifiers. Experimental results show satisfying performance of the proposed method on the tax dataset of N anhai, Foshan, China in 2015 and 2016.\",\"PeriodicalId\":385478,\"journal\":{\"name\":\"2018 International Conference on Wavelet Analysis and Pattern Recognition (ICWAPR)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 International Conference on Wavelet Analysis and Pattern Recognition (ICWAPR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICWAPR.2018.8521362\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Wavelet Analysis and Pattern Recognition (ICWAPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICWAPR.2018.8521362","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

机器学习技术在股票预测、图像分类等领域得到了广泛的应用。在本文中,我们构建了一个集成模型来检测企业是否存在欠税。税务部门可以利用该模型提前发现欠税,避免欠税。集成学习模型由6个基本分类器组成,即多层感知机(MLP)、k近邻(KNN)、随机森林(RF)、极度随机树(ET)、梯度树增强(GTB)和XGBoost。采用加权软投票组合基本分类器。实验结果表明,该方法在2015年和2016年中国佛山南海的税收数据集上取得了令人满意的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Detection of Tax Arrears Based on Ensemble Leaering Model
Machine learning technique has been widely applied in many applications, e.g., stock prediction and image classification. In this paper, we construct an ensemble model to detect whether there are tax arrears in enterprises. Tax department can use this model to detect tax arrears in advance, avoiding tax arrears. The ensemble learning model consists of six base classifiers, i.e., Multi-Layer Perceptron(MLP), k-Nearest Neighbor (KNN), Random Forest(RF), Extremely randomized Trees (ET), Gradient Tree Boosting (GTB) and XGBoost. Soft voting with weight is used to combine the base classifiers. Experimental results show satisfying performance of the proposed method on the tax dataset of N anhai, Foshan, China in 2015 and 2016.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Application of a Convolutional Autoencoder to Half Space Radar Hrrp Recognition Hyperspectral Image Classification Based on Different Affinity Metrics Research of Localization Algorithm of Internet of Vehicles Based on Intelligent Transportation Proceedings of International Conference on Wavelet Analysis and Pattern Recognition Phase Averaging on Square Cylinder Wake Based on Wavelet Analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1