利用Twitter中外生和内生信息信号预测话题活动

Kin Wai Ng, Sameera Horawalavithana, Adriana Iamnitchi
{"title":"利用Twitter中外生和内生信息信号预测话题活动","authors":"Kin Wai Ng, Sameera Horawalavithana, Adriana Iamnitchi","doi":"10.1145/3487351.3488344","DOIUrl":null,"url":null,"abstract":"Modeling social media activity has numerous practical implications such as designing and testing intervention techniques to mitigate disinformation or delivering critical information during disaster relief operations. In this paper we propose a modeling technique that forecasts topic-specific daily volume of social media activities by using both exogenous signals, such as news or armed conflicts records, and endogenous data from the social media platform we model. Empirical evaluations with real datasets from Twitter on two different contexts each composed of multiple interrelated topics demonstrate the effectiveness of our solution.","PeriodicalId":320904,"journal":{"name":"Proceedings of the 2021 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining","volume":"123 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Forecasting topic activity with exogenous and endogenous information signals in Twitter\",\"authors\":\"Kin Wai Ng, Sameera Horawalavithana, Adriana Iamnitchi\",\"doi\":\"10.1145/3487351.3488344\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Modeling social media activity has numerous practical implications such as designing and testing intervention techniques to mitigate disinformation or delivering critical information during disaster relief operations. In this paper we propose a modeling technique that forecasts topic-specific daily volume of social media activities by using both exogenous signals, such as news or armed conflicts records, and endogenous data from the social media platform we model. Empirical evaluations with real datasets from Twitter on two different contexts each composed of multiple interrelated topics demonstrate the effectiveness of our solution.\",\"PeriodicalId\":320904,\"journal\":{\"name\":\"Proceedings of the 2021 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining\",\"volume\":\"123 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2021 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3487351.3488344\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2021 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3487351.3488344","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

对社会媒体活动进行建模具有许多实际意义,例如设计和测试干预技术以减轻虚假信息或在救灾行动中提供关键信息。在本文中,我们提出了一种建模技术,通过使用外生信号(如新闻或武装冲突记录)和来自我们建模的社交媒体平台的内生数据来预测特定主题的社交媒体日活动量。在两种不同的背景下,使用Twitter的真实数据集进行实证评估,每种背景由多个相互关联的主题组成,证明了我们的解决方案的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Forecasting topic activity with exogenous and endogenous information signals in Twitter
Modeling social media activity has numerous practical implications such as designing and testing intervention techniques to mitigate disinformation or delivering critical information during disaster relief operations. In this paper we propose a modeling technique that forecasts topic-specific daily volume of social media activities by using both exogenous signals, such as news or armed conflicts records, and endogenous data from the social media platform we model. Empirical evaluations with real datasets from Twitter on two different contexts each composed of multiple interrelated topics demonstrate the effectiveness of our solution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Predicting COVID-19 with AI techniques: current research and future directions Predictions of drug metabolism pathways through CYP 3A4 enzyme by analysing drug-target interactions network graph An insight into network structure measures and number of driver nodes Temporal dynamics of posts and user engagement of influencers on Facebook and Instagram Vibe check: social resonance learning for enhanced recommendation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1