{"title":"一种高精度晶体传感器的检测实现","authors":"T. Muto, S. Watanabe, S. Wakamatsu, M. Koyama","doi":"10.1109/FREQ.2008.4623055","DOIUrl":null,"url":null,"abstract":"The frequency stability of a crystal sensor in liquid is influenced by a decrease in Q value. Also, the frequency stability is influenced by the water pressure, liquid temperature, and etc. this paper shows a new method of realizing a highly precise crystal sensor by using two crystal sensors for the purpose of solving the above mentioned problem. In conclusion, it has been verified that a crystal resonator having two pairs of electrodes on one AT-cut crystal blank can be used for sensors in liquid for various applications.","PeriodicalId":220442,"journal":{"name":"2008 IEEE International Frequency Control Symposium","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Examination for realization of a high precision crystal sensor\",\"authors\":\"T. Muto, S. Watanabe, S. Wakamatsu, M. Koyama\",\"doi\":\"10.1109/FREQ.2008.4623055\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The frequency stability of a crystal sensor in liquid is influenced by a decrease in Q value. Also, the frequency stability is influenced by the water pressure, liquid temperature, and etc. this paper shows a new method of realizing a highly precise crystal sensor by using two crystal sensors for the purpose of solving the above mentioned problem. In conclusion, it has been verified that a crystal resonator having two pairs of electrodes on one AT-cut crystal blank can be used for sensors in liquid for various applications.\",\"PeriodicalId\":220442,\"journal\":{\"name\":\"2008 IEEE International Frequency Control Symposium\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 IEEE International Frequency Control Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FREQ.2008.4623055\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE International Frequency Control Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FREQ.2008.4623055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Examination for realization of a high precision crystal sensor
The frequency stability of a crystal sensor in liquid is influenced by a decrease in Q value. Also, the frequency stability is influenced by the water pressure, liquid temperature, and etc. this paper shows a new method of realizing a highly precise crystal sensor by using two crystal sensors for the purpose of solving the above mentioned problem. In conclusion, it has been verified that a crystal resonator having two pairs of electrodes on one AT-cut crystal blank can be used for sensors in liquid for various applications.