谐波及间谐波检测的参数优化变分模态分解方法

X. Xi, Pengqi Sun, C. Xing, Shengnan Li, Xincui Tian
{"title":"谐波及间谐波检测的参数优化变分模态分解方法","authors":"X. Xi, Pengqi Sun, C. Xing, Shengnan Li, Xincui Tian","doi":"10.1109/DDCLS58216.2023.10166482","DOIUrl":null,"url":null,"abstract":"An variational mode decomposition (VMD) has been applied in the field of harmonic detection, but the error will be large if the decomposition parameters are set artificially. To improve the accuracy of VMD in inter-harmonics detection, we need to determine the number of wolves, maximum number of iterations, convergence factor and other parameters, and then select component sample entropy function as the fitness function of the Grey Wolf algorithm. The variational mode decomposition can be utilized to extract the harmonic signal and choose a minimum envelope entropy weight as the best component. The Fourier transform is used to obtain the amplitude and frequency information of interharmonic signals. The simulation results show that the proposed method can effectively optimize the parameters and reduce the VMD decomposition error. Compared with empirical mode decomposition (EMD), complementary ensemble empirical mode decomposition (CEEMD) and empirical wavelet transform (EWT), the VMD with optimized parameters can significantly improve the accuracy of interharmonic detection and improve the accurate trace of accident source.","PeriodicalId":415532,"journal":{"name":"2023 IEEE 12th Data Driven Control and Learning Systems Conference (DDCLS)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Parameter Optimized Variational Mode Decomposition Method for Harmonic and Inter-harmonic Detection\",\"authors\":\"X. Xi, Pengqi Sun, C. Xing, Shengnan Li, Xincui Tian\",\"doi\":\"10.1109/DDCLS58216.2023.10166482\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An variational mode decomposition (VMD) has been applied in the field of harmonic detection, but the error will be large if the decomposition parameters are set artificially. To improve the accuracy of VMD in inter-harmonics detection, we need to determine the number of wolves, maximum number of iterations, convergence factor and other parameters, and then select component sample entropy function as the fitness function of the Grey Wolf algorithm. The variational mode decomposition can be utilized to extract the harmonic signal and choose a minimum envelope entropy weight as the best component. The Fourier transform is used to obtain the amplitude and frequency information of interharmonic signals. The simulation results show that the proposed method can effectively optimize the parameters and reduce the VMD decomposition error. Compared with empirical mode decomposition (EMD), complementary ensemble empirical mode decomposition (CEEMD) and empirical wavelet transform (EWT), the VMD with optimized parameters can significantly improve the accuracy of interharmonic detection and improve the accurate trace of accident source.\",\"PeriodicalId\":415532,\"journal\":{\"name\":\"2023 IEEE 12th Data Driven Control and Learning Systems Conference (DDCLS)\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE 12th Data Driven Control and Learning Systems Conference (DDCLS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DDCLS58216.2023.10166482\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 12th Data Driven Control and Learning Systems Conference (DDCLS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DDCLS58216.2023.10166482","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

变分模态分解(VMD)已被应用于谐波检测领域,但如果人为设置分解参数,误差会很大。为了提高VMD在间谐波检测中的准确性,我们需要确定狼的数量、最大迭代次数、收敛因子等参数,然后选择分量样本熵函数作为灰狼算法的适应度函数。变分模态分解可以提取谐波信号,并选择最小包络熵权作为最佳分量。利用傅里叶变换获得谐波间信号的幅值和频率信息。仿真结果表明,该方法可以有效地优化参数,减小VMD分解误差。与经验模态分解(EMD)、互补系综经验模态分解(CEEMD)和经验小波变换(EWT)相比,参数优化后的VMD能显著提高间谐波检测的精度,提高事故源的准确追踪。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Parameter Optimized Variational Mode Decomposition Method for Harmonic and Inter-harmonic Detection
An variational mode decomposition (VMD) has been applied in the field of harmonic detection, but the error will be large if the decomposition parameters are set artificially. To improve the accuracy of VMD in inter-harmonics detection, we need to determine the number of wolves, maximum number of iterations, convergence factor and other parameters, and then select component sample entropy function as the fitness function of the Grey Wolf algorithm. The variational mode decomposition can be utilized to extract the harmonic signal and choose a minimum envelope entropy weight as the best component. The Fourier transform is used to obtain the amplitude and frequency information of interharmonic signals. The simulation results show that the proposed method can effectively optimize the parameters and reduce the VMD decomposition error. Compared with empirical mode decomposition (EMD), complementary ensemble empirical mode decomposition (CEEMD) and empirical wavelet transform (EWT), the VMD with optimized parameters can significantly improve the accuracy of interharmonic detection and improve the accurate trace of accident source.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Research on target grab of leg-arm cooperative robot based on vision A Review of Sound Source Localization Research in Three-Dimensional Space Improved Mixed Discrete Particle Swarms based Multi-task Assignment for UAVs Dynamical linearization based PLS modeling and model-free adaptive control Hidden Markov model based finite-time H∞ guaranteed cost control for singular discrete-time Markov jump delay systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1