利用人工智能加速光子超材料的设计

Yongmin Liu
{"title":"利用人工智能加速光子超材料的设计","authors":"Yongmin Liu","doi":"10.1109/RAPID49481.2020.9195680","DOIUrl":null,"url":null,"abstract":"In this talk, I will discuss how to accelerate the design of novel metamaterials by deep learning, a subset of artificial intelligence (AI) that learns multilevel abstraction of data using hierarchically structured layers. Different from the conventional approaches, deep learning can produce fast and accurate designs without the need of case-by-case and time-consuming numerical calculations or optimizations. The results show many exciting opportunities in the areas of optical design, integration and measurements when interfacing photonics with deep learning.","PeriodicalId":220244,"journal":{"name":"2020 IEEE Research and Applications of Photonics in Defense Conference (RAPID)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Accelerating the Design of Photonic Metamaterials by Artificial Intelligence\",\"authors\":\"Yongmin Liu\",\"doi\":\"10.1109/RAPID49481.2020.9195680\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this talk, I will discuss how to accelerate the design of novel metamaterials by deep learning, a subset of artificial intelligence (AI) that learns multilevel abstraction of data using hierarchically structured layers. Different from the conventional approaches, deep learning can produce fast and accurate designs without the need of case-by-case and time-consuming numerical calculations or optimizations. The results show many exciting opportunities in the areas of optical design, integration and measurements when interfacing photonics with deep learning.\",\"PeriodicalId\":220244,\"journal\":{\"name\":\"2020 IEEE Research and Applications of Photonics in Defense Conference (RAPID)\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE Research and Applications of Photonics in Defense Conference (RAPID)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RAPID49481.2020.9195680\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Research and Applications of Photonics in Defense Conference (RAPID)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RAPID49481.2020.9195680","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

与传统方法不同,深度学习可以产生快速准确的设计,而不需要逐个案例和耗时的数值计算或优化。结果表明,当将光子学与深度学习相结合时,光学设计、集成和测量领域将有许多令人兴奋的机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Accelerating the Design of Photonic Metamaterials by Artificial Intelligence
In this talk, I will discuss how to accelerate the design of novel metamaterials by deep learning, a subset of artificial intelligence (AI) that learns multilevel abstraction of data using hierarchically structured layers. Different from the conventional approaches, deep learning can produce fast and accurate designs without the need of case-by-case and time-consuming numerical calculations or optimizations. The results show many exciting opportunities in the areas of optical design, integration and measurements when interfacing photonics with deep learning.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Simple Dual-Frequency Coherent Noise Ladar Universal Biosensor for Multiple Biomarker Detection for Medical Applications Non-Electrical Topside (NET) Optical Fiber helps Mitigate Boundary Interactions AI Powered THz Testing Technology for Ensuring Hardware Cybersecurity Far-Field Thermal Emission from Optical Antennas on an Epsilon-Near-Zero Substrate
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1