一种基于自适应空间和运动补偿时间滤波器的智能视频降噪方法

Thou-Ho Chen, Chao-Yu Chen, Tsong-Yi Chen, Ming-Kun Wu
{"title":"一种基于自适应空间和运动补偿时间滤波器的智能视频降噪方法","authors":"Thou-Ho Chen, Chao-Yu Chen, Tsong-Yi Chen, Ming-Kun Wu","doi":"10.1109/ICCIS.2006.252302","DOIUrl":null,"url":null,"abstract":"In this paper, we propose an effective noise reduction method for image sequences corrupted by the Gaussian noise or impulse noise. The basic strategy is to combine the spatial just noticeable distortion (JND) with local image characteristics for spatial filtering and utilize the motion compensation for temporal filtering. For spatial filtering, an adaptive scheme composed of the harmonic mean filter, weighted arithmetic mean filter, alpha-trimmed mean filter, median filter and thresholding filter is dedicated to reducing noises on an image. Then, a motion-compensation based temporal filter is focused on refining the spatial-filtered image frame with the previous and following frames. Experimental results show that the proposed noise-reduction method is better than four previous methods with a PSNR improvement rate of 8.85% on Gaussian noise, 11.69% on fixed-value impulse noise and 11.64% on random-value impulse noise over the average of these four methods","PeriodicalId":296028,"journal":{"name":"2006 IEEE Conference on Cybernetics and Intelligent Systems","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An Intelliegent Video Noise Reduction Method Using Adaptive Spatial and Motion-Compensation Temporal Filter\",\"authors\":\"Thou-Ho Chen, Chao-Yu Chen, Tsong-Yi Chen, Ming-Kun Wu\",\"doi\":\"10.1109/ICCIS.2006.252302\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose an effective noise reduction method for image sequences corrupted by the Gaussian noise or impulse noise. The basic strategy is to combine the spatial just noticeable distortion (JND) with local image characteristics for spatial filtering and utilize the motion compensation for temporal filtering. For spatial filtering, an adaptive scheme composed of the harmonic mean filter, weighted arithmetic mean filter, alpha-trimmed mean filter, median filter and thresholding filter is dedicated to reducing noises on an image. Then, a motion-compensation based temporal filter is focused on refining the spatial-filtered image frame with the previous and following frames. Experimental results show that the proposed noise-reduction method is better than four previous methods with a PSNR improvement rate of 8.85% on Gaussian noise, 11.69% on fixed-value impulse noise and 11.64% on random-value impulse noise over the average of these four methods\",\"PeriodicalId\":296028,\"journal\":{\"name\":\"2006 IEEE Conference on Cybernetics and Intelligent Systems\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 IEEE Conference on Cybernetics and Intelligent Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCIS.2006.252302\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE Conference on Cybernetics and Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCIS.2006.252302","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文针对高斯噪声和脉冲噪声对图像序列的干扰,提出了一种有效的降噪方法。其基本策略是将空间不明显失真与图像局部特征相结合进行空间滤波,利用运动补偿进行时间滤波。在空间滤波方面,提出了一种由谐波均值滤波、加权算术均值滤波、阿尔法均值滤波、中值滤波和阈值滤波组成的自适应滤波方案,用于去除图像中的噪声。然后,基于运动补偿的时间滤波器重点是利用前一帧和后一帧对经过空间滤波的图像帧进行细化。实验结果表明,该降噪方法对高斯噪声、固定值脉冲噪声和随机值脉冲噪声的平均信噪比分别提高了8.85%、11.69%和11.64%
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Intelliegent Video Noise Reduction Method Using Adaptive Spatial and Motion-Compensation Temporal Filter
In this paper, we propose an effective noise reduction method for image sequences corrupted by the Gaussian noise or impulse noise. The basic strategy is to combine the spatial just noticeable distortion (JND) with local image characteristics for spatial filtering and utilize the motion compensation for temporal filtering. For spatial filtering, an adaptive scheme composed of the harmonic mean filter, weighted arithmetic mean filter, alpha-trimmed mean filter, median filter and thresholding filter is dedicated to reducing noises on an image. Then, a motion-compensation based temporal filter is focused on refining the spatial-filtered image frame with the previous and following frames. Experimental results show that the proposed noise-reduction method is better than four previous methods with a PSNR improvement rate of 8.85% on Gaussian noise, 11.69% on fixed-value impulse noise and 11.64% on random-value impulse noise over the average of these four methods
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multi-layer Control Strategy of Dynamics Control System of Vehicle A Fuzzy Multiple Critera Decision Making Method Gait Recognition Considering Directions of Walking Nonlinear Diffusion Driven by Local Features for Image Denoising Designing of an Adaptive Adcock Array and Reducing the Effects of Other Transmitters, Unwanted Reflections and Noise
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1