{"title":"一种I+II混合模式断裂韧性评定方法的探讨","authors":"Afaf Bouydo, V. Lacroix, R. Chaouadi, V. Mareš","doi":"10.1115/PVP2018-84575","DOIUrl":null,"url":null,"abstract":"In fracture mechanics, a flaw behavior in pressure vessels is assessed with respect to the material fracture toughness.\n Fracture toughness which most Fitness-for-Service (FFS) codes relies on, only considers mode-I crack opening. However, in presence of tilted flaws, like quasi-laminar hydrogen flakes, this mode-I toughness may be too severe, and a mixed mode I+II fracture toughness seems to be more appropriate.\n In order to address the assessment of the fracture toughness curve, mixed mode I+II tests were performed by the authors on ferritic steel samples by adjusting the standard mode I CT specimen geometry to a geometry subjected to mixed mode I+II. Then, XFEM simulations of the mixed mode tests were performed in order to calculate the J-integral along the crack front.\n Based on tests and calculations results, the paper explains how the authors work towards proposing a method to measure the material fracture toughness in case of flaws subjected to mixed mode (I+II) loading.","PeriodicalId":128383,"journal":{"name":"Volume 1A: Codes and Standards","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Towards a Process for the Assessment of Mixed Mode I+II Fracture Toughness\",\"authors\":\"Afaf Bouydo, V. Lacroix, R. Chaouadi, V. Mareš\",\"doi\":\"10.1115/PVP2018-84575\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In fracture mechanics, a flaw behavior in pressure vessels is assessed with respect to the material fracture toughness.\\n Fracture toughness which most Fitness-for-Service (FFS) codes relies on, only considers mode-I crack opening. However, in presence of tilted flaws, like quasi-laminar hydrogen flakes, this mode-I toughness may be too severe, and a mixed mode I+II fracture toughness seems to be more appropriate.\\n In order to address the assessment of the fracture toughness curve, mixed mode I+II tests were performed by the authors on ferritic steel samples by adjusting the standard mode I CT specimen geometry to a geometry subjected to mixed mode I+II. Then, XFEM simulations of the mixed mode tests were performed in order to calculate the J-integral along the crack front.\\n Based on tests and calculations results, the paper explains how the authors work towards proposing a method to measure the material fracture toughness in case of flaws subjected to mixed mode (I+II) loading.\",\"PeriodicalId\":128383,\"journal\":{\"name\":\"Volume 1A: Codes and Standards\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 1A: Codes and Standards\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/PVP2018-84575\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 1A: Codes and Standards","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/PVP2018-84575","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Towards a Process for the Assessment of Mixed Mode I+II Fracture Toughness
In fracture mechanics, a flaw behavior in pressure vessels is assessed with respect to the material fracture toughness.
Fracture toughness which most Fitness-for-Service (FFS) codes relies on, only considers mode-I crack opening. However, in presence of tilted flaws, like quasi-laminar hydrogen flakes, this mode-I toughness may be too severe, and a mixed mode I+II fracture toughness seems to be more appropriate.
In order to address the assessment of the fracture toughness curve, mixed mode I+II tests were performed by the authors on ferritic steel samples by adjusting the standard mode I CT specimen geometry to a geometry subjected to mixed mode I+II. Then, XFEM simulations of the mixed mode tests were performed in order to calculate the J-integral along the crack front.
Based on tests and calculations results, the paper explains how the authors work towards proposing a method to measure the material fracture toughness in case of flaws subjected to mixed mode (I+II) loading.