基于三相谐波注入锁定的43μW 6GHz CMOS分频器

M. Motoyoshi, Minoru Fujishima
{"title":"基于三相谐波注入锁定的43μW 6GHz CMOS分频器","authors":"M. Motoyoshi, Minoru Fujishima","doi":"10.1109/ASSCC.2006.357881","DOIUrl":null,"url":null,"abstract":"A harmonic injection-locked divider (HILD) is effective for realizing a low-power phase-locked loop (PLL) circuit because the high-frequency output of a voltage-controlled oscillator (VCO) is down-converted into a low-frequency signal instantaneously. Conventional resonator-based HILDs, however, occupy a large chip area and exhibit a narrow locking range because either an LC or short-stub resonator is required. Ring-oscillator-based HILDs, on the other hand, operate at a relatively low frequency, again with a narrow locking range. In this study, a new HILD based on three-phase harmonic injection locking is proposed, which realizes a small chip area, a low power consumption, and a wide locking range. As a result of fabrication with 0.18 μm CMOS, a divide-by-three HILD is realized with a power consumption of 43 μW, a maximum operating frequency of 6 GHz, and a locking range of 80% at a supply voltage of 0.7 V. The core size is 10.8 μm x 10.5 μm.","PeriodicalId":142478,"journal":{"name":"2006 IEEE Asian Solid-State Circuits Conference","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":"{\"title\":\"43μW 6GHz CMOS Divide-by-3 Frequency Divider Based on Three-Phase Harmonic Injection Locking\",\"authors\":\"M. Motoyoshi, Minoru Fujishima\",\"doi\":\"10.1109/ASSCC.2006.357881\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A harmonic injection-locked divider (HILD) is effective for realizing a low-power phase-locked loop (PLL) circuit because the high-frequency output of a voltage-controlled oscillator (VCO) is down-converted into a low-frequency signal instantaneously. Conventional resonator-based HILDs, however, occupy a large chip area and exhibit a narrow locking range because either an LC or short-stub resonator is required. Ring-oscillator-based HILDs, on the other hand, operate at a relatively low frequency, again with a narrow locking range. In this study, a new HILD based on three-phase harmonic injection locking is proposed, which realizes a small chip area, a low power consumption, and a wide locking range. As a result of fabrication with 0.18 μm CMOS, a divide-by-three HILD is realized with a power consumption of 43 μW, a maximum operating frequency of 6 GHz, and a locking range of 80% at a supply voltage of 0.7 V. The core size is 10.8 μm x 10.5 μm.\",\"PeriodicalId\":142478,\"journal\":{\"name\":\"2006 IEEE Asian Solid-State Circuits Conference\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"33\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 IEEE Asian Solid-State Circuits Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASSCC.2006.357881\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE Asian Solid-State Circuits Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASSCC.2006.357881","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 33

摘要

谐波注入锁分频器(HILD)是实现低功率锁相环(PLL)电路的有效方法,因为压控振荡器(VCO)的高频输出可以瞬间下变频为低频信号。然而,传统的基于谐振器的hild占据了很大的芯片面积,并且由于需要LC或短管谐振器,因此锁定范围很窄。另一方面,基于环形振荡器的HILDs工作频率相对较低,锁定范围也很窄。本文提出了一种基于三相谐波注入锁相的新型HILD,实现了芯片面积小、功耗低、锁相范围宽的特点。采用0.18 μm CMOS制作,在0.7 V电源电压下,以43 μW的功耗、6 GHz的最大工作频率和80%的锁定范围实现了1 / 3 HILD。芯线尺寸为10.8 μm × 10.5 μm。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
43μW 6GHz CMOS Divide-by-3 Frequency Divider Based on Three-Phase Harmonic Injection Locking
A harmonic injection-locked divider (HILD) is effective for realizing a low-power phase-locked loop (PLL) circuit because the high-frequency output of a voltage-controlled oscillator (VCO) is down-converted into a low-frequency signal instantaneously. Conventional resonator-based HILDs, however, occupy a large chip area and exhibit a narrow locking range because either an LC or short-stub resonator is required. Ring-oscillator-based HILDs, on the other hand, operate at a relatively low frequency, again with a narrow locking range. In this study, a new HILD based on three-phase harmonic injection locking is proposed, which realizes a small chip area, a low power consumption, and a wide locking range. As a result of fabrication with 0.18 μm CMOS, a divide-by-three HILD is realized with a power consumption of 43 μW, a maximum operating frequency of 6 GHz, and a locking range of 80% at a supply voltage of 0.7 V. The core size is 10.8 μm x 10.5 μm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
ESD Protection Design by Using Only 1×VDD Low-Voltage Devices for Mixed-Voltage I/O Buffers with 3×VDD Input Tolerance A Digitally Calibrated Current-Voltage Feedback Transconductor in 0.13-μm CMOS Process A Wide-Range Burst Mode Clock and Data Recovery Circuit A 2.4-GHz CMOS Driver Amplifier Based on Multiple-Gated Transistor and Resistive Source Degeneration for Mobile WiMAX Design of a Dual-Mode NoC Router Integrated with Network Interface for AMBA-based IPs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1