特征加权的迭代救济

Yijun Sun, Jian Li
{"title":"特征加权的迭代救济","authors":"Yijun Sun, Jian Li","doi":"10.1145/1143844.1143959","DOIUrl":null,"url":null,"abstract":"We propose a series of new feature weighting algorithms, all stemming from a new interpretation of RELIEF as an online algorithm that solves a convex optimization problem with a margin-based objective function. The new interpretation explains the simplicity and effectiveness of RELIEF, and enables us to identify some of its weaknesses. We offer an analytic solution to mitigate these problems. We extend the newly proposed algorithm to handle multiclass problems by using a new multiclass margin definition. To reduce computational costs, an online learning algorithm is also developed. Convergence theorems of the proposed algorithms are presented. Some experiments based on the UCI and microarray datasets are performed to demonstrate the effectiveness of the proposed algorithms.","PeriodicalId":124011,"journal":{"name":"Proceedings of the 23rd international conference on Machine learning","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"162","resultStr":"{\"title\":\"Iterative RELIEF for feature weighting\",\"authors\":\"Yijun Sun, Jian Li\",\"doi\":\"10.1145/1143844.1143959\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a series of new feature weighting algorithms, all stemming from a new interpretation of RELIEF as an online algorithm that solves a convex optimization problem with a margin-based objective function. The new interpretation explains the simplicity and effectiveness of RELIEF, and enables us to identify some of its weaknesses. We offer an analytic solution to mitigate these problems. We extend the newly proposed algorithm to handle multiclass problems by using a new multiclass margin definition. To reduce computational costs, an online learning algorithm is also developed. Convergence theorems of the proposed algorithms are presented. Some experiments based on the UCI and microarray datasets are performed to demonstrate the effectiveness of the proposed algorithms.\",\"PeriodicalId\":124011,\"journal\":{\"name\":\"Proceedings of the 23rd international conference on Machine learning\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"162\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 23rd international conference on Machine learning\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1143844.1143959\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 23rd international conference on Machine learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1143844.1143959","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 162

摘要

我们提出了一系列新的特征加权算法,所有这些算法都源于对RELIEF的新解释,即使用基于边缘的目标函数解决凸优化问题的在线算法。新的解释解释了RELIEF的简单性和有效性,并使我们能够确定它的一些弱点。我们提供了一个分析解决方案来缓解这些问题。通过使用新的多类余量定义,我们将新提出的算法扩展到处理多类问题。为了减少计算成本,还开发了一种在线学习算法。给出了算法的收敛定理。基于UCI和微阵列数据集的实验验证了所提算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Iterative RELIEF for feature weighting
We propose a series of new feature weighting algorithms, all stemming from a new interpretation of RELIEF as an online algorithm that solves a convex optimization problem with a margin-based objective function. The new interpretation explains the simplicity and effectiveness of RELIEF, and enables us to identify some of its weaknesses. We offer an analytic solution to mitigate these problems. We extend the newly proposed algorithm to handle multiclass problems by using a new multiclass margin definition. To reduce computational costs, an online learning algorithm is also developed. Convergence theorems of the proposed algorithms are presented. Some experiments based on the UCI and microarray datasets are performed to demonstrate the effectiveness of the proposed algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
On a theory of learning with similarity functions Bayesian learning of measurement and structural models Predictive search distributions Data association for topic intensity tracking Feature value acquisition in testing: a sequential batch test algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1