一种基于变换协方差差分的方位估计方法

S. Prasad, Ronald T. Williams, Arijit K. Mahalanabis, L. Sibul
{"title":"一种基于变换协方差差分的方位估计方法","authors":"S. Prasad, Ronald T. Williams, Arijit K. Mahalanabis, L. Sibul","doi":"10.1109/ICASSP.1987.1169850","DOIUrl":null,"url":null,"abstract":"In recent years a new, and very powerful technique for parameter estimation - the eigenstructure, or signal subspace method - has been developed. Eigenstructure algorithms are closely related to Pisarenko's method for estimating the frequencies of sinusoids in white Gaussian noise. In theory they yield asymptotically unbiased estimates of arbitrarily close parameters, independent of the signal-to-noise ratio (SNR). Although signal subspace methods have proven to be powerful tools, they are not without drawbacks. An important weakness of all signal subspace algorithmis their need to know the noise covariance explicitly. The important problem of developing signal subspace based procedures for signals in noise fields with unknown covariance has not been satisfactorily addressed. It is our intent to propose a solution to the problem of direction-of-arrival (DOA) estimation for a broad class of unknown noise fields. We will then briefly discuss other important estimation problems for which modified versions of this procedure can be applied.","PeriodicalId":140810,"journal":{"name":"ICASSP '87. IEEE International Conference on Acoustics, Speech, and Signal Processing","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1987-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"A transform based covariance differencing approach to bearing estimation\",\"authors\":\"S. Prasad, Ronald T. Williams, Arijit K. Mahalanabis, L. Sibul\",\"doi\":\"10.1109/ICASSP.1987.1169850\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years a new, and very powerful technique for parameter estimation - the eigenstructure, or signal subspace method - has been developed. Eigenstructure algorithms are closely related to Pisarenko's method for estimating the frequencies of sinusoids in white Gaussian noise. In theory they yield asymptotically unbiased estimates of arbitrarily close parameters, independent of the signal-to-noise ratio (SNR). Although signal subspace methods have proven to be powerful tools, they are not without drawbacks. An important weakness of all signal subspace algorithmis their need to know the noise covariance explicitly. The important problem of developing signal subspace based procedures for signals in noise fields with unknown covariance has not been satisfactorily addressed. It is our intent to propose a solution to the problem of direction-of-arrival (DOA) estimation for a broad class of unknown noise fields. We will then briefly discuss other important estimation problems for which modified versions of this procedure can be applied.\",\"PeriodicalId\":140810,\"journal\":{\"name\":\"ICASSP '87. IEEE International Conference on Acoustics, Speech, and Signal Processing\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1987-04-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICASSP '87. IEEE International Conference on Acoustics, Speech, and Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.1987.1169850\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP '87. IEEE International Conference on Acoustics, Speech, and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.1987.1169850","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

近年来,一种新的、非常强大的参数估计技术——特征结构或信号子空间法被开发出来。特征结构算法与Pisarenko在高斯白噪声中估计正弦波频率的方法密切相关。理论上,它们产生任意接近参数的渐近无偏估计,与信噪比(SNR)无关。虽然信号子空间方法已被证明是一种强大的工具,但它们并非没有缺点。所有信号子空间算法的一个重要缺点是需要明确地知道噪声协方差。对于协方差未知的噪声域中的信号,开发基于信号子空间的处理方法这一重要问题还没有得到令人满意的解决。我们的目的是针对一类未知噪声场的到达方向估计问题提出一种解决方案。然后,我们将简要讨论其他重要的评估问题,这些问题可以应用此过程的修改版本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A transform based covariance differencing approach to bearing estimation
In recent years a new, and very powerful technique for parameter estimation - the eigenstructure, or signal subspace method - has been developed. Eigenstructure algorithms are closely related to Pisarenko's method for estimating the frequencies of sinusoids in white Gaussian noise. In theory they yield asymptotically unbiased estimates of arbitrarily close parameters, independent of the signal-to-noise ratio (SNR). Although signal subspace methods have proven to be powerful tools, they are not without drawbacks. An important weakness of all signal subspace algorithmis their need to know the noise covariance explicitly. The important problem of developing signal subspace based procedures for signals in noise fields with unknown covariance has not been satisfactorily addressed. It is our intent to propose a solution to the problem of direction-of-arrival (DOA) estimation for a broad class of unknown noise fields. We will then briefly discuss other important estimation problems for which modified versions of this procedure can be applied.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A high resolution data-adaptive time-frequency representation A fast prediction-error detector for estimating sparse-spike sequences Some applications of mathematical morphology to range imagery Parameter estimation using the autocorrelation of the discrete Fourier transform Array signal processing with interconnected Neuron-like elements
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1