{"title":"行星齿轮箱齿轮损伤等级的分类","authors":"Zhiliang Liu, M. Zuo, J. Qu, Hongbing Xu","doi":"10.1109/CIMSA.2011.6059913","DOIUrl":null,"url":null,"abstract":"Linear discriminant analysis (LDA) is a method of feature extraction that has demonstrated successful applications. The selection of the number of discriminant directions (r) is important to LDA, yet little attention is paid in the reported literature. In this paper a method is proposed for determining the optimal r in terms of the classification accuracy of support vector machine. The method is applied to identify gear damage levels in a planetary gearbox. Planet gears with four damage levels labeled as baseline, slight, moderate, and severe were used in lab experiments for data collection. Results demonstrate that the proposed method outperforms two reported methods and is effective to address the given problem.","PeriodicalId":422972,"journal":{"name":"2011 IEEE International Conference on Computational Intelligence for Measurement Systems and Applications (CIMSA) Proceedings","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Classification of gear damage levels in planetary gearboxes\",\"authors\":\"Zhiliang Liu, M. Zuo, J. Qu, Hongbing Xu\",\"doi\":\"10.1109/CIMSA.2011.6059913\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Linear discriminant analysis (LDA) is a method of feature extraction that has demonstrated successful applications. The selection of the number of discriminant directions (r) is important to LDA, yet little attention is paid in the reported literature. In this paper a method is proposed for determining the optimal r in terms of the classification accuracy of support vector machine. The method is applied to identify gear damage levels in a planetary gearbox. Planet gears with four damage levels labeled as baseline, slight, moderate, and severe were used in lab experiments for data collection. Results demonstrate that the proposed method outperforms two reported methods and is effective to address the given problem.\",\"PeriodicalId\":422972,\"journal\":{\"name\":\"2011 IEEE International Conference on Computational Intelligence for Measurement Systems and Applications (CIMSA) Proceedings\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE International Conference on Computational Intelligence for Measurement Systems and Applications (CIMSA) Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIMSA.2011.6059913\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Conference on Computational Intelligence for Measurement Systems and Applications (CIMSA) Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIMSA.2011.6059913","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Classification of gear damage levels in planetary gearboxes
Linear discriminant analysis (LDA) is a method of feature extraction that has demonstrated successful applications. The selection of the number of discriminant directions (r) is important to LDA, yet little attention is paid in the reported literature. In this paper a method is proposed for determining the optimal r in terms of the classification accuracy of support vector machine. The method is applied to identify gear damage levels in a planetary gearbox. Planet gears with four damage levels labeled as baseline, slight, moderate, and severe were used in lab experiments for data collection. Results demonstrate that the proposed method outperforms two reported methods and is effective to address the given problem.