基于粒子群优化的并联混合动力汽车控制策略参数优化

Mariem Boujneh, N. Majdoub, T. Ladhari, A. Sakly
{"title":"基于粒子群优化的并联混合动力汽车控制策略参数优化","authors":"Mariem Boujneh, N. Majdoub, T. Ladhari, A. Sakly","doi":"10.1109/STA50679.2020.9329308","DOIUrl":null,"url":null,"abstract":"Hybrid Electric Vehicles (HEVs) allow fuel economy and reduced emissions in comparison to conventional vehicles. To improve HEV performance in relation to reduce fuel utilization and emissions, and guarantee driving performance, the optimization of control strategy is indispensable. In this paper, the multiobjective optimization problem is converted to single-objective problem. Particle Swarm Optimization (PSO) algorithm is then used to conceive appropriate control parameters, for the purpose to reduce fuel consumption and emissions with conserved vehicle performance requirements. To simulate a parallel hybrid electric vehicle, ADvanced VehIcle SimulatOR (ADVISOR) is used with Federal Test Procedure (FTP) and Urban Dynamometer Driving Schedule (UDDS) to estimate Fuel Consumption (FC), emissions and vehicle dynamics.","PeriodicalId":158545,"journal":{"name":"2020 20th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering (STA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal Control Strategy Parameters of Parallel Hybrid Electric Vehicles Based on Particle Swarm Optimization\",\"authors\":\"Mariem Boujneh, N. Majdoub, T. Ladhari, A. Sakly\",\"doi\":\"10.1109/STA50679.2020.9329308\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hybrid Electric Vehicles (HEVs) allow fuel economy and reduced emissions in comparison to conventional vehicles. To improve HEV performance in relation to reduce fuel utilization and emissions, and guarantee driving performance, the optimization of control strategy is indispensable. In this paper, the multiobjective optimization problem is converted to single-objective problem. Particle Swarm Optimization (PSO) algorithm is then used to conceive appropriate control parameters, for the purpose to reduce fuel consumption and emissions with conserved vehicle performance requirements. To simulate a parallel hybrid electric vehicle, ADvanced VehIcle SimulatOR (ADVISOR) is used with Federal Test Procedure (FTP) and Urban Dynamometer Driving Schedule (UDDS) to estimate Fuel Consumption (FC), emissions and vehicle dynamics.\",\"PeriodicalId\":158545,\"journal\":{\"name\":\"2020 20th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering (STA)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 20th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering (STA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/STA50679.2020.9329308\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 20th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering (STA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/STA50679.2020.9329308","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

与传统汽车相比,混合动力电动汽车(hev)具有燃油经济性和减少排放的优点。为了提高混合动力汽车的性能,降低燃油利用率和排放,保证行驶性能,控制策略的优化是必不可少的。本文将多目标优化问题转化为单目标优化问题。然后利用粒子群优化算法(Particle Swarm Optimization, PSO)构思合适的控制参数,在保持整车性能要求的前提下,达到降低油耗和排放的目的。为了模拟一辆并联混合动力汽车,使用ADvanced vehicle SimulatOR (ADVISOR)与Federal Test Procedure (FTP)和Urban Dynamometer Driving Schedule (UDDS)来估算燃料消耗(FC)、排放和车辆动力学。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimal Control Strategy Parameters of Parallel Hybrid Electric Vehicles Based on Particle Swarm Optimization
Hybrid Electric Vehicles (HEVs) allow fuel economy and reduced emissions in comparison to conventional vehicles. To improve HEV performance in relation to reduce fuel utilization and emissions, and guarantee driving performance, the optimization of control strategy is indispensable. In this paper, the multiobjective optimization problem is converted to single-objective problem. Particle Swarm Optimization (PSO) algorithm is then used to conceive appropriate control parameters, for the purpose to reduce fuel consumption and emissions with conserved vehicle performance requirements. To simulate a parallel hybrid electric vehicle, ADvanced VehIcle SimulatOR (ADVISOR) is used with Federal Test Procedure (FTP) and Urban Dynamometer Driving Schedule (UDDS) to estimate Fuel Consumption (FC), emissions and vehicle dynamics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Modeling and Performance Analysis of the Transceiver Duplex Filter using SIMULINK DSP Implementation of a Novel SPWM Algorithm Dedicated to the Delta Inverter Singularity representation and workspace determination of the parrallel robot PAR4 Identification of PWARX Model Based on Outer Bounding Ellipsoid Algorithm Fuzzy T2I Adaptive Backstepping Control for a State-Coupled Two-Tank System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1