基于imu传感器数据的动态时间规整监测步态性能

Xingchen Wang, Maria Kyrarini, Danijela Ristić-Durrant, M. Spranger, A. Gräser
{"title":"基于imu传感器数据的动态时间规整监测步态性能","authors":"Xingchen Wang, Maria Kyrarini, Danijela Ristić-Durrant, M. Spranger, A. Gräser","doi":"10.1109/MeMeA.2016.7533745","DOIUrl":null,"url":null,"abstract":"In this paper, a novel method for monitoring the changes in gait joint angle trajectories recorded using the low-cost and wearable Inertial Measurement Units (IMU) is presented. The introduced method is based on Dynamic Time Warping (DTW), an algorithm commonly used for evaluating the similarity of two time series which may vary in time and speed. DTW is employed as the measure of distance between two gait trajectories taken in different time instances, which could be used as an intuitive and effective measure for the evaluation of gait performances. The experimental results presented in the paper demonstrate that the proposed method is applicable for clinically relevant applications and is consequently adaptable to patients with diseases characterized with gait disorders and to different walking scenarios. The proposed method was firstly validated by applying the DTW-based measure on gait trajectories of five healthy subjects recorded while simulating different levels of walking disabilities. Then proposed measure was applied to estimate the distance between the “healthy” gait trajectories and gait trajectories of three patients with Parkinson's disease (PD) while performing single-task and dual-task overground walking. Also, the proposed measure was demonstrated as an effective measure for monitoring the changes in gait patterns of a PD patient before and after medication-based treatment. This result indicates potential use of proposed method for effective pharmacological management of PD.","PeriodicalId":221120,"journal":{"name":"2016 IEEE International Symposium on Medical Measurements and Applications (MeMeA)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Monitoring of gait performance using dynamic time warping on IMU-sensor data\",\"authors\":\"Xingchen Wang, Maria Kyrarini, Danijela Ristić-Durrant, M. Spranger, A. Gräser\",\"doi\":\"10.1109/MeMeA.2016.7533745\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a novel method for monitoring the changes in gait joint angle trajectories recorded using the low-cost and wearable Inertial Measurement Units (IMU) is presented. The introduced method is based on Dynamic Time Warping (DTW), an algorithm commonly used for evaluating the similarity of two time series which may vary in time and speed. DTW is employed as the measure of distance between two gait trajectories taken in different time instances, which could be used as an intuitive and effective measure for the evaluation of gait performances. The experimental results presented in the paper demonstrate that the proposed method is applicable for clinically relevant applications and is consequently adaptable to patients with diseases characterized with gait disorders and to different walking scenarios. The proposed method was firstly validated by applying the DTW-based measure on gait trajectories of five healthy subjects recorded while simulating different levels of walking disabilities. Then proposed measure was applied to estimate the distance between the “healthy” gait trajectories and gait trajectories of three patients with Parkinson's disease (PD) while performing single-task and dual-task overground walking. Also, the proposed measure was demonstrated as an effective measure for monitoring the changes in gait patterns of a PD patient before and after medication-based treatment. This result indicates potential use of proposed method for effective pharmacological management of PD.\",\"PeriodicalId\":221120,\"journal\":{\"name\":\"2016 IEEE International Symposium on Medical Measurements and Applications (MeMeA)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Symposium on Medical Measurements and Applications (MeMeA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MeMeA.2016.7533745\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Symposium on Medical Measurements and Applications (MeMeA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MeMeA.2016.7533745","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

本文提出了一种利用低成本可穿戴惯性测量单元(IMU)监测步态关节角度轨迹变化的新方法。该方法基于动态时间翘曲(DTW)算法,该算法通常用于评估两个时间和速度变化的时间序列的相似性。采用DTW作为不同时间点下两条步态轨迹之间距离的度量,可以作为评价步态性能的一种直观有效的度量。本文的实验结果表明,该方法可用于临床相关应用,因此适用于以步态障碍为特征的疾病患者和不同的行走场景。首先,将基于dtw的测量方法应用于模拟不同程度行走障碍时记录的5个健康受试者的步态轨迹,验证了所提方法的有效性。然后应用该测量方法估计了3例帕金森病患者在进行单任务和双任务地上行走时“健康”步态轨迹与步态轨迹之间的距离。此外,所提出的措施被证明是监测PD患者在药物治疗前后步态模式变化的有效措施。这一结果表明,所提出的方法可能用于有效的PD药物管理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Monitoring of gait performance using dynamic time warping on IMU-sensor data
In this paper, a novel method for monitoring the changes in gait joint angle trajectories recorded using the low-cost and wearable Inertial Measurement Units (IMU) is presented. The introduced method is based on Dynamic Time Warping (DTW), an algorithm commonly used for evaluating the similarity of two time series which may vary in time and speed. DTW is employed as the measure of distance between two gait trajectories taken in different time instances, which could be used as an intuitive and effective measure for the evaluation of gait performances. The experimental results presented in the paper demonstrate that the proposed method is applicable for clinically relevant applications and is consequently adaptable to patients with diseases characterized with gait disorders and to different walking scenarios. The proposed method was firstly validated by applying the DTW-based measure on gait trajectories of five healthy subjects recorded while simulating different levels of walking disabilities. Then proposed measure was applied to estimate the distance between the “healthy” gait trajectories and gait trajectories of three patients with Parkinson's disease (PD) while performing single-task and dual-task overground walking. Also, the proposed measure was demonstrated as an effective measure for monitoring the changes in gait patterns of a PD patient before and after medication-based treatment. This result indicates potential use of proposed method for effective pharmacological management of PD.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Investigation of temperature rise in tissue — Mimicking material induced by a HIFU transducer Influence of fiber Bragg grating length on temperature measurements in laser-irradiated organs Optimal peripheral measurement point for the assessment of preterm patients in intensive care units Classification of cognitive and resting states of the brain using EEG features Scoring systems in dermatology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1