M. T. Sultan, J. Gudmundsson, A. Manolescu, M. Ciurea, C. Palade, A. Maraloiu, H. Svavarsson
{"title":"通过强化退火条件增强sige -三层堆叠的光电导率","authors":"M. T. Sultan, J. Gudmundsson, A. Manolescu, M. Ciurea, C. Palade, A. Maraloiu, H. Svavarsson","doi":"10.1109/SMICND.2018.8539775","DOIUrl":null,"url":null,"abstract":"We studied the effect of short term furnace annealing over the photoconductive properties of tristacked layer i.e. TiO2/(SiGe/TiO2)3. The structure was prepared by depositing alternate layers of TiO2 and SiGe films, using direct-current magnetron sputtering technique. A transmission electron microscopy and grazing incidence spectroscopy was used to analyze the morphology of the structure. Photoconductive properties were studied by measuring photocurrent spectra at different applied voltages and temperatures. Tristack layers were obtained with 5–10 nm SiGe nanocrystals (NCs) by annealing at 600 °C for 5 min. No sign of SiO2 formation was found inside stacked layers. A maximum in the photocurrent spectra was observed at 994 nm at 300 K but it red-shifted gradually to 1045 nm with decrease in temperature to 100 K. This transition in peak maxima is attributed to SiGe NCs, due to lattice vibration and to contribution of non-radiative recombination at low temperatures.","PeriodicalId":247062,"journal":{"name":"2018 International Semiconductor Conference (CAS)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced Photoconductivity of SIGE-Trilayer Stack by Retrenching Annealing Conditions\",\"authors\":\"M. T. Sultan, J. Gudmundsson, A. Manolescu, M. Ciurea, C. Palade, A. Maraloiu, H. Svavarsson\",\"doi\":\"10.1109/SMICND.2018.8539775\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We studied the effect of short term furnace annealing over the photoconductive properties of tristacked layer i.e. TiO2/(SiGe/TiO2)3. The structure was prepared by depositing alternate layers of TiO2 and SiGe films, using direct-current magnetron sputtering technique. A transmission electron microscopy and grazing incidence spectroscopy was used to analyze the morphology of the structure. Photoconductive properties were studied by measuring photocurrent spectra at different applied voltages and temperatures. Tristack layers were obtained with 5–10 nm SiGe nanocrystals (NCs) by annealing at 600 °C for 5 min. No sign of SiO2 formation was found inside stacked layers. A maximum in the photocurrent spectra was observed at 994 nm at 300 K but it red-shifted gradually to 1045 nm with decrease in temperature to 100 K. This transition in peak maxima is attributed to SiGe NCs, due to lattice vibration and to contribution of non-radiative recombination at low temperatures.\",\"PeriodicalId\":247062,\"journal\":{\"name\":\"2018 International Semiconductor Conference (CAS)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 International Semiconductor Conference (CAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SMICND.2018.8539775\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Semiconductor Conference (CAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SMICND.2018.8539775","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Enhanced Photoconductivity of SIGE-Trilayer Stack by Retrenching Annealing Conditions
We studied the effect of short term furnace annealing over the photoconductive properties of tristacked layer i.e. TiO2/(SiGe/TiO2)3. The structure was prepared by depositing alternate layers of TiO2 and SiGe films, using direct-current magnetron sputtering technique. A transmission electron microscopy and grazing incidence spectroscopy was used to analyze the morphology of the structure. Photoconductive properties were studied by measuring photocurrent spectra at different applied voltages and temperatures. Tristack layers were obtained with 5–10 nm SiGe nanocrystals (NCs) by annealing at 600 °C for 5 min. No sign of SiO2 formation was found inside stacked layers. A maximum in the photocurrent spectra was observed at 994 nm at 300 K but it red-shifted gradually to 1045 nm with decrease in temperature to 100 K. This transition in peak maxima is attributed to SiGe NCs, due to lattice vibration and to contribution of non-radiative recombination at low temperatures.