大数据分析中的梯度增强机器和深度学习方法:以股票市场为例

Lokesh Kumar Shrivastav, Ravinder Kumar
{"title":"大数据分析中的梯度增强机器和深度学习方法:以股票市场为例","authors":"Lokesh Kumar Shrivastav, Ravinder Kumar","doi":"10.4018/jitr.2022010101","DOIUrl":null,"url":null,"abstract":"Designing a system for analytics of high-frequency data (Big data) is a very challenging and crucial task in data science. Big data analytics involves the development of an efficient machine learning algorithm and big data processing techniques or frameworks. Today, the development of the data processing system is in high demand for processing high-frequency data in a very efficient manner. This paper proposes the processing and analytics of stochastic high-frequency stock market data using a modified version of suitable Gradient Boosting Machine (GBM). The experimental results obtained are compared with deep learning and Auto-Regressive Integrated Moving Average (ARIMA) methods. The results obtained using modified GBM achieves the highest accuracy (R2 = 0.98) and minimum error (RMSE = 0.85) as compared to the other two approaches.","PeriodicalId":296080,"journal":{"name":"J. Inf. Technol. Res.","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Gradient Boosting Machine and Deep Learning Approach in Big Data Analysis: A Case Study of the Stock Market\",\"authors\":\"Lokesh Kumar Shrivastav, Ravinder Kumar\",\"doi\":\"10.4018/jitr.2022010101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Designing a system for analytics of high-frequency data (Big data) is a very challenging and crucial task in data science. Big data analytics involves the development of an efficient machine learning algorithm and big data processing techniques or frameworks. Today, the development of the data processing system is in high demand for processing high-frequency data in a very efficient manner. This paper proposes the processing and analytics of stochastic high-frequency stock market data using a modified version of suitable Gradient Boosting Machine (GBM). The experimental results obtained are compared with deep learning and Auto-Regressive Integrated Moving Average (ARIMA) methods. The results obtained using modified GBM achieves the highest accuracy (R2 = 0.98) and minimum error (RMSE = 0.85) as compared to the other two approaches.\",\"PeriodicalId\":296080,\"journal\":{\"name\":\"J. Inf. Technol. Res.\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"J. Inf. Technol. Res.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/jitr.2022010101\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Inf. Technol. Res.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/jitr.2022010101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

设计一个用于分析高频数据(大数据)的系统是数据科学中非常具有挑战性和关键的任务。大数据分析涉及开发高效的机器学习算法和大数据处理技术或框架。如今,数据处理系统的发展对高频数据的高效处理提出了很高的要求。本文提出了一种改进的合适梯度增强机(GBM)来处理和分析随机高频股票市场数据。实验结果与深度学习和自回归综合移动平均(ARIMA)方法进行了比较。与其他两种方法相比,使用改进的GBM方法获得的结果精度最高(R2 = 0.98),误差最小(RMSE = 0.85)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Gradient Boosting Machine and Deep Learning Approach in Big Data Analysis: A Case Study of the Stock Market
Designing a system for analytics of high-frequency data (Big data) is a very challenging and crucial task in data science. Big data analytics involves the development of an efficient machine learning algorithm and big data processing techniques or frameworks. Today, the development of the data processing system is in high demand for processing high-frequency data in a very efficient manner. This paper proposes the processing and analytics of stochastic high-frequency stock market data using a modified version of suitable Gradient Boosting Machine (GBM). The experimental results obtained are compared with deep learning and Auto-Regressive Integrated Moving Average (ARIMA) methods. The results obtained using modified GBM achieves the highest accuracy (R2 = 0.98) and minimum error (RMSE = 0.85) as compared to the other two approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Benchmarking Serverless Computing: Performance and Usability MAC Protocol Analysis for Wireless Sensor Networks Prognostic Model for the Risk of Coronavirus Disease (COVID-19) Using Fuzzy Logic Modeling Evaluation of Teachers' Innovation and Entrepreneurship Ability in Universities Based on Artificial Neural Networks Cluster-Based Vehicle Routing on Road Segments in Dematerialised Traffic Infrastructures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1