直方图比较的扩散距离

Haibin Ling, K. Okada
{"title":"直方图比较的扩散距离","authors":"Haibin Ling, K. Okada","doi":"10.1109/CVPR.2006.99","DOIUrl":null,"url":null,"abstract":"In this paper we propose diffusion distance, a new dissimilarity measure between histogram-based descriptors. We define the difference between two histograms to be a temperature field. We then study the relationship between histogram similarity and a diffusion process, showing how diffusion handles deformation as well as quantization effects. As a result, the diffusion distance is derived as the sum of dissimilarities over scales. Being a cross-bin histogram distance, the diffusion distance is robust to deformation, lighting change and noise in histogram-based local descriptors. In addition, it enjoys linear computational complexity which significantly improves previously proposed cross-bin distances with quadratic complexity or higher. We tested the proposed approach on both shape recognition and interest point matching tasks using several multi-dimensional histogram-based descriptors including shape context, SIFT, and spin images. In all experiments, the diffusion distance performs excellently in both accuracy and efficiency in comparison with other state-of-the-art distance measures. In particular, it performs as accurately as the Earth Mover’s Distance with much greater efficiency.","PeriodicalId":421737,"journal":{"name":"2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"270","resultStr":"{\"title\":\"Diffusion Distance for Histogram Comparison\",\"authors\":\"Haibin Ling, K. Okada\",\"doi\":\"10.1109/CVPR.2006.99\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we propose diffusion distance, a new dissimilarity measure between histogram-based descriptors. We define the difference between two histograms to be a temperature field. We then study the relationship between histogram similarity and a diffusion process, showing how diffusion handles deformation as well as quantization effects. As a result, the diffusion distance is derived as the sum of dissimilarities over scales. Being a cross-bin histogram distance, the diffusion distance is robust to deformation, lighting change and noise in histogram-based local descriptors. In addition, it enjoys linear computational complexity which significantly improves previously proposed cross-bin distances with quadratic complexity or higher. We tested the proposed approach on both shape recognition and interest point matching tasks using several multi-dimensional histogram-based descriptors including shape context, SIFT, and spin images. In all experiments, the diffusion distance performs excellently in both accuracy and efficiency in comparison with other state-of-the-art distance measures. In particular, it performs as accurately as the Earth Mover’s Distance with much greater efficiency.\",\"PeriodicalId\":421737,\"journal\":{\"name\":\"2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)\",\"volume\":\"60 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"270\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR.2006.99\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2006.99","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 270

摘要

本文提出了一种新的基于直方图的描述符之间不相似度度量方法——扩散距离。我们将两个直方图之间的差定义为温度场。然后,我们研究了直方图相似性和扩散过程之间的关系,展示了扩散如何处理变形以及量化效果。因此,扩散距离推导为不同尺度的不相似度之和。在基于直方图的局部描述符中,扩散距离作为一个跨bin直方图距离,对变形、光照变化和噪声具有鲁棒性。此外,它具有线性计算复杂度,这大大提高了先前提出的二次复杂度或更高的跨库距离。我们使用几种基于多维直方图的描述符(包括形状上下文、SIFT和旋转图像)在形状识别和兴趣点匹配任务上测试了所提出的方法。在所有实验中,与其他最先进的距离测量方法相比,扩散距离在准确性和效率方面都表现出色。特别是,它的计算精度与地球移动距离一样,而且效率要高得多。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Diffusion Distance for Histogram Comparison
In this paper we propose diffusion distance, a new dissimilarity measure between histogram-based descriptors. We define the difference between two histograms to be a temperature field. We then study the relationship between histogram similarity and a diffusion process, showing how diffusion handles deformation as well as quantization effects. As a result, the diffusion distance is derived as the sum of dissimilarities over scales. Being a cross-bin histogram distance, the diffusion distance is robust to deformation, lighting change and noise in histogram-based local descriptors. In addition, it enjoys linear computational complexity which significantly improves previously proposed cross-bin distances with quadratic complexity or higher. We tested the proposed approach on both shape recognition and interest point matching tasks using several multi-dimensional histogram-based descriptors including shape context, SIFT, and spin images. In all experiments, the diffusion distance performs excellently in both accuracy and efficiency in comparison with other state-of-the-art distance measures. In particular, it performs as accurately as the Earth Mover’s Distance with much greater efficiency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Dynamic Bayesian Network Model for Autonomous 3D Reconstruction from a Single Indoor Image Efficient Maximally Stable Extremal Region (MSER) Tracking Transformation invariant component analysis for binary images Region-Tree Based Stereo Using Dynamic Programming Optimization Probabilistic 3D Polyp Detection in CT Images: The Role of Sample Alignment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1