密集干扰网络的低复杂度跨层设计

Sara Akbarzadeh, L. Cottatellucci, C. Bonnet
{"title":"密集干扰网络的低复杂度跨层设计","authors":"Sara Akbarzadeh, L. Cottatellucci, C. Bonnet","doi":"10.1109/WIOPT.2009.5291590","DOIUrl":null,"url":null,"abstract":"We considered a dense interference network with a large number (K → ∞) of transmitter-receiver pairs. Each transmitter is endowed with a finite buffer and accepts packets from an arrival process. Each transmitter-receiver link is a fading vector channel with N diversity paths whose statistics are described by a Markov chain. We investigate distributed algorithms for joint admission control, rate and power allocation aiming at maximizing the individual throughput defined as the average information rate successfully received. The decisions are based on the statistical knowledge of the channel and buffer states of the other communication pairs and on the exact knowledge of their own channel and buffer states. In the case of a finite number of communication pairs this problem is computationally extremely intensive with an exponential complexity in the number of users. Assuming that K,N → ∞ with constant ratio the algorithm complexity becomes substantially independent of the number of active communications and grows with the groups of users having distinct asymptotic channel statistics. The cross-layer design is investigated for different kind of decoders at the receiver. The benefits of a cross layer approach compared to a resource allocation ignoring the states of the queues are assessed. The performance loss due to the use of policies designed for asymptotic conditions and applied to networks with a finite number of active communications is studied.","PeriodicalId":143632,"journal":{"name":"2009 7th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks","volume":"163 8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Low complexity cross-layer design for dense interference networks\",\"authors\":\"Sara Akbarzadeh, L. Cottatellucci, C. Bonnet\",\"doi\":\"10.1109/WIOPT.2009.5291590\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We considered a dense interference network with a large number (K → ∞) of transmitter-receiver pairs. Each transmitter is endowed with a finite buffer and accepts packets from an arrival process. Each transmitter-receiver link is a fading vector channel with N diversity paths whose statistics are described by a Markov chain. We investigate distributed algorithms for joint admission control, rate and power allocation aiming at maximizing the individual throughput defined as the average information rate successfully received. The decisions are based on the statistical knowledge of the channel and buffer states of the other communication pairs and on the exact knowledge of their own channel and buffer states. In the case of a finite number of communication pairs this problem is computationally extremely intensive with an exponential complexity in the number of users. Assuming that K,N → ∞ with constant ratio the algorithm complexity becomes substantially independent of the number of active communications and grows with the groups of users having distinct asymptotic channel statistics. The cross-layer design is investigated for different kind of decoders at the receiver. The benefits of a cross layer approach compared to a resource allocation ignoring the states of the queues are assessed. The performance loss due to the use of policies designed for asymptotic conditions and applied to networks with a finite number of active communications is studied.\",\"PeriodicalId\":143632,\"journal\":{\"name\":\"2009 7th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks\",\"volume\":\"163 8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 7th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WIOPT.2009.5291590\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 7th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WIOPT.2009.5291590","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

我们考虑了一个具有大量(K→∞)收发对的密集干扰网络。每个发送器都有一个有限的缓冲区,并接受来自到达过程的数据包。每个收发链路是一个有N个分集路径的衰落矢量信道,其统计量用马尔可夫链来描述。我们研究了联合准入控制,速率和功率分配的分布式算法,旨在最大化个体吞吐量,定义为成功接收的平均信息速率。这些决策是基于其他通信对的信道和缓冲状态的统计知识,以及它们自己的信道和缓冲状态的确切知识。在有限数量的通信对的情况下,这个问题的计算非常密集,用户数量呈指数级复杂性。假设K,N→∞且比率恒定,则算法复杂度与主动通信数基本无关,并随着具有不同渐近信道统计量的用户群而增长。研究了接收端不同类型解码器的跨层设计。与忽略队列状态的资源分配相比,评估了跨层方法的优势。研究了基于渐近条件设计的策略在有限主动通信网络中的性能损失。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Low complexity cross-layer design for dense interference networks
We considered a dense interference network with a large number (K → ∞) of transmitter-receiver pairs. Each transmitter is endowed with a finite buffer and accepts packets from an arrival process. Each transmitter-receiver link is a fading vector channel with N diversity paths whose statistics are described by a Markov chain. We investigate distributed algorithms for joint admission control, rate and power allocation aiming at maximizing the individual throughput defined as the average information rate successfully received. The decisions are based on the statistical knowledge of the channel and buffer states of the other communication pairs and on the exact knowledge of their own channel and buffer states. In the case of a finite number of communication pairs this problem is computationally extremely intensive with an exponential complexity in the number of users. Assuming that K,N → ∞ with constant ratio the algorithm complexity becomes substantially independent of the number of active communications and grows with the groups of users having distinct asymptotic channel statistics. The cross-layer design is investigated for different kind of decoders at the receiver. The benefits of a cross layer approach compared to a resource allocation ignoring the states of the queues are assessed. The performance loss due to the use of policies designed for asymptotic conditions and applied to networks with a finite number of active communications is studied.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Joint load balancing, scheduling, and interference mitigation in multi-cell and multi-carrier wireless data systems Transmission schedule optimization for half-duplex multiple-relay networks Quantization, channel compensation, and energy allocation for estimation in wireless sensor networks Characterization of power consumption in thin clients due to protocol data transmission over IEEE 802.11 Battery recovery aware sensor networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1