基于降维表堆栈算法的低复杂度近ml解码技术

J. Choi, B. Shim, A. Singer, N. Cho
{"title":"基于降维表堆栈算法的低复杂度近ml解码技术","authors":"J. Choi, B. Shim, A. Singer, N. Cho","doi":"10.1109/SAM.2008.4606820","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a near maximum likelihood (ML) decoding technique, which reduces the computational complexity of the exact ML decoding algorithm. The computations needed for the tree search in the ML decoding is simplified by reducing the dimension of the search space prior to the tree search. In order to compensate performance loss due to the dimension reduction, a list stack algorithm (LSA) is considered, which produces a list of the top K closest points. The combination of both approaches, called reduced dimension list stack algorithm (RD-LSA), is shown to provide flexibility and offers a performance-complexity trade-off. Simulations performed for V-BLAST transmission demonstrate that significant complexity reduction can be achieved compared to the sphere decoding algorithm (SDA) while keeping the performance loss below an acceptable level.","PeriodicalId":422747,"journal":{"name":"2008 5th IEEE Sensor Array and Multichannel Signal Processing Workshop","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A low-complexity near-ML decoding technique via reduced dimension list stack algorithm\",\"authors\":\"J. Choi, B. Shim, A. Singer, N. Cho\",\"doi\":\"10.1109/SAM.2008.4606820\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a near maximum likelihood (ML) decoding technique, which reduces the computational complexity of the exact ML decoding algorithm. The computations needed for the tree search in the ML decoding is simplified by reducing the dimension of the search space prior to the tree search. In order to compensate performance loss due to the dimension reduction, a list stack algorithm (LSA) is considered, which produces a list of the top K closest points. The combination of both approaches, called reduced dimension list stack algorithm (RD-LSA), is shown to provide flexibility and offers a performance-complexity trade-off. Simulations performed for V-BLAST transmission demonstrate that significant complexity reduction can be achieved compared to the sphere decoding algorithm (SDA) while keeping the performance loss below an acceptable level.\",\"PeriodicalId\":422747,\"journal\":{\"name\":\"2008 5th IEEE Sensor Array and Multichannel Signal Processing Workshop\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 5th IEEE Sensor Array and Multichannel Signal Processing Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SAM.2008.4606820\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 5th IEEE Sensor Array and Multichannel Signal Processing Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAM.2008.4606820","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文提出了一种近似最大似然(ML)解码技术,降低了精确ML解码算法的计算复杂度。通过在树搜索之前减少搜索空间的维数,简化了ML解码中树搜索所需的计算。为了补偿由于维数减少而造成的性能损失,考虑了列表堆栈算法(LSA),该算法产生最接近的K个点的列表。这两种方法的组合称为降维列表堆栈算法(RD-LSA),它提供了灵活性,并提供了性能复杂性的权衡。对V-BLAST传输进行的仿真表明,与球面解码算法(SDA)相比,可以显著降低复杂性,同时将性能损失保持在可接受的水平以下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A low-complexity near-ML decoding technique via reduced dimension list stack algorithm
In this paper, we propose a near maximum likelihood (ML) decoding technique, which reduces the computational complexity of the exact ML decoding algorithm. The computations needed for the tree search in the ML decoding is simplified by reducing the dimension of the search space prior to the tree search. In order to compensate performance loss due to the dimension reduction, a list stack algorithm (LSA) is considered, which produces a list of the top K closest points. The combination of both approaches, called reduced dimension list stack algorithm (RD-LSA), is shown to provide flexibility and offers a performance-complexity trade-off. Simulations performed for V-BLAST transmission demonstrate that significant complexity reduction can be achieved compared to the sphere decoding algorithm (SDA) while keeping the performance loss below an acceptable level.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A dual-linear predictor approach to blind source extraction for noisy mixtures Optimal combination of fourth order statistics for non-circular source separation Blind channel identification and signal recovery by confining a component of the observations into a convex-hull of minimum volume Power-aware distributed detection in IR-UWB sensor networks Linear least squares based acoustic source localization utilizing energy measurements
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1