新的信息内容度量和名词化关系为一种新的基于wordnet的语义关联度量方法

M. A. Hadj Taieb, Mohamed Ben Aouicha, M. Tmar, Abdelmajid Ben Hamadou
{"title":"新的信息内容度量和名词化关系为一种新的基于wordnet的语义关联度量方法","authors":"M. A. Hadj Taieb, Mohamed Ben Aouicha, M. Tmar, Abdelmajid Ben Hamadou","doi":"10.1109/CIS.2011.6169134","DOIUrl":null,"url":null,"abstract":"Semantic similarity techniques are used to compute the semantic similarity (common shared information) between two concepts according to certain language or domain resources like ontologies, taxonomies, corpora, etc. Semantic similarity techniques constitute important components in most Information Retrieval (IR) and knowledge-based systems. Taking semantics into account passes by the use of external semantic resources coupled with the initial documentation on which it is necessary to have semantic similarity measurements to carry out comparisons between concepts. This paper presents a new approach for measuring semantic relatedness between words and concepts. It combines a new information content (IC) metric using the WordNet thesaurus and the nominalization relation provided by the Java WordNet Library (JWNL). Specifically, the proposed method offers a thorough use of the relation hypernym/hyponym (noun and verb “is a” taxonomy) without external corpus statistical information. Mainly, we use the subgraph formed by hypernyms of the concerned concept which inherits the whole features of its hypernyms and we quantify the contribution of each concept pertaining to this subgraph in its information content. When tested on a common data set of word pair similarity ratings, the proposed approach outperforms other computational models. It gives the highest correlation value 0.70 with a benchmark based on human similarity judgments and especially a large dataset composed of 260 Finkelstein word pairs (Appendix 1 and 2).","PeriodicalId":286889,"journal":{"name":"2011 IEEE 10th International Conference on Cybernetic Intelligent Systems (CIS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"New information content metric and nominalization relation for a new WordNet-based method to measure the semantic relatedness\",\"authors\":\"M. A. Hadj Taieb, Mohamed Ben Aouicha, M. Tmar, Abdelmajid Ben Hamadou\",\"doi\":\"10.1109/CIS.2011.6169134\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Semantic similarity techniques are used to compute the semantic similarity (common shared information) between two concepts according to certain language or domain resources like ontologies, taxonomies, corpora, etc. Semantic similarity techniques constitute important components in most Information Retrieval (IR) and knowledge-based systems. Taking semantics into account passes by the use of external semantic resources coupled with the initial documentation on which it is necessary to have semantic similarity measurements to carry out comparisons between concepts. This paper presents a new approach for measuring semantic relatedness between words and concepts. It combines a new information content (IC) metric using the WordNet thesaurus and the nominalization relation provided by the Java WordNet Library (JWNL). Specifically, the proposed method offers a thorough use of the relation hypernym/hyponym (noun and verb “is a” taxonomy) without external corpus statistical information. Mainly, we use the subgraph formed by hypernyms of the concerned concept which inherits the whole features of its hypernyms and we quantify the contribution of each concept pertaining to this subgraph in its information content. When tested on a common data set of word pair similarity ratings, the proposed approach outperforms other computational models. It gives the highest correlation value 0.70 with a benchmark based on human similarity judgments and especially a large dataset composed of 260 Finkelstein word pairs (Appendix 1 and 2).\",\"PeriodicalId\":286889,\"journal\":{\"name\":\"2011 IEEE 10th International Conference on Cybernetic Intelligent Systems (CIS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE 10th International Conference on Cybernetic Intelligent Systems (CIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIS.2011.6169134\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE 10th International Conference on Cybernetic Intelligent Systems (CIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIS.2011.6169134","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

语义相似度技术是指根据本体、分类法、语料库等特定的语言或领域资源,计算两个概念之间的语义相似度(公共共享信息)。语义相似技术是大多数信息检索和知识系统的重要组成部分。通过使用外部语义资源以及初始文档来考虑语义,有必要对其进行语义相似性度量,以便在概念之间进行比较。本文提出了一种测量词与概念之间语义相关性的新方法。它结合了使用WordNet同义词库和Java WordNet Library (JWNL)提供的名词化关系的新信息内容度量。具体而言,该方法在没有外部语料库统计信息的情况下,充分利用了上、下义关系(名词和动词“是一个”分类法)。该方法主要采用由相关概念的缩略词构成的子图,该子图继承其缩略词的全部特征,并量化与该子图相关的每个概念在其信息内容中的贡献。当在一个常见的词对相似度评级数据集上进行测试时,所提出的方法优于其他计算模型。基于人类相似性判断的基准,特别是由260个Finkelstein词对组成的大型数据集(附录1和2),它给出了最高的相关值0.70。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
New information content metric and nominalization relation for a new WordNet-based method to measure the semantic relatedness
Semantic similarity techniques are used to compute the semantic similarity (common shared information) between two concepts according to certain language or domain resources like ontologies, taxonomies, corpora, etc. Semantic similarity techniques constitute important components in most Information Retrieval (IR) and knowledge-based systems. Taking semantics into account passes by the use of external semantic resources coupled with the initial documentation on which it is necessary to have semantic similarity measurements to carry out comparisons between concepts. This paper presents a new approach for measuring semantic relatedness between words and concepts. It combines a new information content (IC) metric using the WordNet thesaurus and the nominalization relation provided by the Java WordNet Library (JWNL). Specifically, the proposed method offers a thorough use of the relation hypernym/hyponym (noun and verb “is a” taxonomy) without external corpus statistical information. Mainly, we use the subgraph formed by hypernyms of the concerned concept which inherits the whole features of its hypernyms and we quantify the contribution of each concept pertaining to this subgraph in its information content. When tested on a common data set of word pair similarity ratings, the proposed approach outperforms other computational models. It gives the highest correlation value 0.70 with a benchmark based on human similarity judgments and especially a large dataset composed of 260 Finkelstein word pairs (Appendix 1 and 2).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hybrid Particle Swarm Optimization with parameter selection approaches to solve Flow Shop Scheduling Problem A software system for data mining with twitter Measuring security requirements for software security A novel technique for object oriented relational database design Electrocardiogram beat classification using classifier fusion based on Decision Templates
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1