{"title":"新型星形聚合物甲基丙烯酸叔丁酯和甲基丙烯酸异丁酯的合成与表征","authors":"T. Long, L. Kilian, Zhen-he Wang, A. Esker","doi":"10.1117/12.446778","DOIUrl":null,"url":null,"abstract":"Star-shaped polymers containing poly(isobutyl methacrylate) (iBMA) and poly(tert-butyl methacrylate) (t-BMA) arms coupled to a 2,5-dimethyl-2,5-hexanediol dimethacrylate (DHDMA) core were synthesized using arm-first living anionic polymerization. Gel permeation chromatography (GPC) indicated that coupling efficiencies were high and coupled products exhibited a monomodal molecular weight distribution. The star-shaped polymer number--average molecular weights were 8-10 times higher than the precursor arm molecular weights. The ratio of coupling reagent to living chain end concentration controlled the molecular weight of the star-shaped polymer and the number of coupled arms. The molecular weight distributions of the star-shaped polymers ranged from 1.5-2.0. Due to the labile tertiary- butyl esters contained in the DHDMA cores, these star-shaped polymers were readily hydrolyzed in the presence of acid catalysts. For example, poly(iBMA) star-shaped polymers were hydrolytically stable at 25 degree(s)C and hydrolyzed readily at 65 degree(s)C in the presence of hydrochloric acid. In addition, the poly(t-BMA) containing star--shaped polymers degraded under similar conditions. The degradation process for the iBMA and t-BMA containing star-shaped polymers was confirmed using 1H NMR spectroscopy, and poly(iBMA)-block- poly(methacrylic acid) and poly(methacrylic acid) were obtained, respectively.","PeriodicalId":341144,"journal":{"name":"Complex Adaptive Structures","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Synthesis and characterization of novel acid-sensitive tert-butyl methacrylate and isobutyl methacrylate containing star-shaped polymers\",\"authors\":\"T. Long, L. Kilian, Zhen-he Wang, A. Esker\",\"doi\":\"10.1117/12.446778\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Star-shaped polymers containing poly(isobutyl methacrylate) (iBMA) and poly(tert-butyl methacrylate) (t-BMA) arms coupled to a 2,5-dimethyl-2,5-hexanediol dimethacrylate (DHDMA) core were synthesized using arm-first living anionic polymerization. Gel permeation chromatography (GPC) indicated that coupling efficiencies were high and coupled products exhibited a monomodal molecular weight distribution. The star-shaped polymer number--average molecular weights were 8-10 times higher than the precursor arm molecular weights. The ratio of coupling reagent to living chain end concentration controlled the molecular weight of the star-shaped polymer and the number of coupled arms. The molecular weight distributions of the star-shaped polymers ranged from 1.5-2.0. Due to the labile tertiary- butyl esters contained in the DHDMA cores, these star-shaped polymers were readily hydrolyzed in the presence of acid catalysts. For example, poly(iBMA) star-shaped polymers were hydrolytically stable at 25 degree(s)C and hydrolyzed readily at 65 degree(s)C in the presence of hydrochloric acid. In addition, the poly(t-BMA) containing star--shaped polymers degraded under similar conditions. The degradation process for the iBMA and t-BMA containing star-shaped polymers was confirmed using 1H NMR spectroscopy, and poly(iBMA)-block- poly(methacrylic acid) and poly(methacrylic acid) were obtained, respectively.\",\"PeriodicalId\":341144,\"journal\":{\"name\":\"Complex Adaptive Structures\",\"volume\":\"65 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Complex Adaptive Structures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.446778\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex Adaptive Structures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.446778","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Synthesis and characterization of novel acid-sensitive tert-butyl methacrylate and isobutyl methacrylate containing star-shaped polymers
Star-shaped polymers containing poly(isobutyl methacrylate) (iBMA) and poly(tert-butyl methacrylate) (t-BMA) arms coupled to a 2,5-dimethyl-2,5-hexanediol dimethacrylate (DHDMA) core were synthesized using arm-first living anionic polymerization. Gel permeation chromatography (GPC) indicated that coupling efficiencies were high and coupled products exhibited a monomodal molecular weight distribution. The star-shaped polymer number--average molecular weights were 8-10 times higher than the precursor arm molecular weights. The ratio of coupling reagent to living chain end concentration controlled the molecular weight of the star-shaped polymer and the number of coupled arms. The molecular weight distributions of the star-shaped polymers ranged from 1.5-2.0. Due to the labile tertiary- butyl esters contained in the DHDMA cores, these star-shaped polymers were readily hydrolyzed in the presence of acid catalysts. For example, poly(iBMA) star-shaped polymers were hydrolytically stable at 25 degree(s)C and hydrolyzed readily at 65 degree(s)C in the presence of hydrochloric acid. In addition, the poly(t-BMA) containing star--shaped polymers degraded under similar conditions. The degradation process for the iBMA and t-BMA containing star-shaped polymers was confirmed using 1H NMR spectroscopy, and poly(iBMA)-block- poly(methacrylic acid) and poly(methacrylic acid) were obtained, respectively.