高清地图:利用opdrive在路径规划和地图监控方面的潜力

Alejandro Diaz-Diaz, M. Ocaña, A. Llamazares, Carlos Gómez Huélamo, P. Revenga, L. Bergasa
{"title":"高清地图:利用opdrive在路径规划和地图监控方面的潜力","authors":"Alejandro Diaz-Diaz, M. Ocaña, A. Llamazares, Carlos Gómez Huélamo, P. Revenga, L. Bergasa","doi":"10.1109/iv51971.2022.9827297","DOIUrl":null,"url":null,"abstract":"Autonomous vehicle (AV) is one of the most challenging engineering tasks of our era. High-Definition (HD) maps are a fundamental tool in the development of AVs, being considered as pseudo sensors that provide a trusted baseline that other sensors cannot. Our approach is focused on the use of OpenDRIVE standard based HD maps in order to conduct the different mapping and planning tasks involved in Autonomous Driving (AD). In this paper we present a method for exploiting the HD map potential for two specific purposes: i) Global Path Planning and ii) Monitoring the relevant lanes and regulatory elements around the ego-vehicle to support the perception module. Mapping and planning modules are connected to the other modules of the AV stack by using ROS (Robot Operating System). Our AD architecture has been validated both in local and CARLA Autonomous Driving Leaderboard cloud, where we can appreciate a considerable improvement in the metrics by incorporating information from the HD map, not only used to conduct the Global Path Planning task but also providing prior information to the Perception module. Code is available in https://github.com/AlejandroDiazD/opendrive-mapping-planning.","PeriodicalId":184622,"journal":{"name":"2022 IEEE Intelligent Vehicles Symposium (IV)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"HD maps: Exploiting OpenDRIVE potential for Path Planning and Map Monitoring\",\"authors\":\"Alejandro Diaz-Diaz, M. Ocaña, A. Llamazares, Carlos Gómez Huélamo, P. Revenga, L. Bergasa\",\"doi\":\"10.1109/iv51971.2022.9827297\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Autonomous vehicle (AV) is one of the most challenging engineering tasks of our era. High-Definition (HD) maps are a fundamental tool in the development of AVs, being considered as pseudo sensors that provide a trusted baseline that other sensors cannot. Our approach is focused on the use of OpenDRIVE standard based HD maps in order to conduct the different mapping and planning tasks involved in Autonomous Driving (AD). In this paper we present a method for exploiting the HD map potential for two specific purposes: i) Global Path Planning and ii) Monitoring the relevant lanes and regulatory elements around the ego-vehicle to support the perception module. Mapping and planning modules are connected to the other modules of the AV stack by using ROS (Robot Operating System). Our AD architecture has been validated both in local and CARLA Autonomous Driving Leaderboard cloud, where we can appreciate a considerable improvement in the metrics by incorporating information from the HD map, not only used to conduct the Global Path Planning task but also providing prior information to the Perception module. Code is available in https://github.com/AlejandroDiazD/opendrive-mapping-planning.\",\"PeriodicalId\":184622,\"journal\":{\"name\":\"2022 IEEE Intelligent Vehicles Symposium (IV)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE Intelligent Vehicles Symposium (IV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/iv51971.2022.9827297\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Intelligent Vehicles Symposium (IV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iv51971.2022.9827297","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

自动驾驶汽车(AV)是当今时代最具挑战性的工程任务之一。高清(HD)地图是自动驾驶汽车开发的基本工具,被认为是提供其他传感器无法提供的可信基线的伪传感器。我们的方法侧重于使用基于opdrive标准的高清地图,以执行自动驾驶(AD)中涉及的不同地图和规划任务。在本文中,我们提出了一种利用高清地图潜力的方法,用于两个特定目的:i)全球路径规划和ii)监控自我车辆周围的相关车道和监管元素,以支持感知模块。映射和规划模块通过ROS(机器人操作系统)连接到AV堆栈的其他模块。我们的AD架构已经在本地和CARLA自动驾驶排行榜云上得到了验证,通过整合高清地图的信息,我们可以欣赏到指标的显著改进,不仅用于执行全局路径规划任务,还为感知模块提供了先验信息。代码可从https://github.com/AlejandroDiazD/opendrive-mapping-planning获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
HD maps: Exploiting OpenDRIVE potential for Path Planning and Map Monitoring
Autonomous vehicle (AV) is one of the most challenging engineering tasks of our era. High-Definition (HD) maps are a fundamental tool in the development of AVs, being considered as pseudo sensors that provide a trusted baseline that other sensors cannot. Our approach is focused on the use of OpenDRIVE standard based HD maps in order to conduct the different mapping and planning tasks involved in Autonomous Driving (AD). In this paper we present a method for exploiting the HD map potential for two specific purposes: i) Global Path Planning and ii) Monitoring the relevant lanes and regulatory elements around the ego-vehicle to support the perception module. Mapping and planning modules are connected to the other modules of the AV stack by using ROS (Robot Operating System). Our AD architecture has been validated both in local and CARLA Autonomous Driving Leaderboard cloud, where we can appreciate a considerable improvement in the metrics by incorporating information from the HD map, not only used to conduct the Global Path Planning task but also providing prior information to the Perception module. Code is available in https://github.com/AlejandroDiazD/opendrive-mapping-planning.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Dynamic Conflict Mitigation for Cooperative Driving Control of Intelligent Vehicles Detecting vehicles in the dark in urban environments - A human benchmark A Sequential Decision-theoretic Method for Detecting Mobile Robots Localization Failures Scene Spatio-Temporal Graph Convolutional Network for Pedestrian Intention Estimation What Can be Seen is What You Get: Structure Aware Point Cloud Augmentation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1