使用基于机器学习树的算法预测低、高价格的货币协方差

Sylwester Bejger, P. Fiszeder
{"title":"使用基于机器学习树的算法预测低、高价格的货币协方差","authors":"Sylwester Bejger, P. Fiszeder","doi":"10.5604/01.3001.0015.5582","DOIUrl":null,"url":null,"abstract":"We combine machine learning tree-based algorithms with the usage of low and high prices and suggest a new approach to forecasting currency covariances. We apply three algorithms: Random Forest Regression, Gradient Boosting Regression Trees and Extreme Gradient Boosting with a tree learner. We conduct an empirical evaluation of this procedure on the three most heavily traded currency pairs in the Forex market: EUR/USD, USD/JPY and GBP/USD. The forecasts of covariances formulated on the three applied algorithms are predominantly more accurate than the Dynamic Conditional Correlation model based on closing prices. The results of the analyses indicate that the GBRT algorithm is the bestperforming method.\n\n","PeriodicalId":357447,"journal":{"name":"Przegląd Statystyczny","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Forecasting currency covariances using machine learning tree-based algorithms with low and high prices\",\"authors\":\"Sylwester Bejger, P. Fiszeder\",\"doi\":\"10.5604/01.3001.0015.5582\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We combine machine learning tree-based algorithms with the usage of low and high prices and suggest a new approach to forecasting currency covariances. We apply three algorithms: Random Forest Regression, Gradient Boosting Regression Trees and Extreme Gradient Boosting with a tree learner. We conduct an empirical evaluation of this procedure on the three most heavily traded currency pairs in the Forex market: EUR/USD, USD/JPY and GBP/USD. The forecasts of covariances formulated on the three applied algorithms are predominantly more accurate than the Dynamic Conditional Correlation model based on closing prices. The results of the analyses indicate that the GBRT algorithm is the bestperforming method.\\n\\n\",\"PeriodicalId\":357447,\"journal\":{\"name\":\"Przegląd Statystyczny\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Przegląd Statystyczny\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5604/01.3001.0015.5582\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Przegląd Statystyczny","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5604/01.3001.0015.5582","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们将基于机器学习树的算法与低价和高价的使用结合起来,提出了一种预测货币协方差的新方法。我们应用了三种算法:随机森林回归、梯度增强回归树和带树学习器的极端梯度增强。我们对外汇市场上三个交易量最大的货币对:欧元/美元、美元/日元和英镑/美元进行了实证评估。三种应用算法对协方差的预测明显优于基于收盘价的动态条件相关模型。分析结果表明,GBRT算法是性能最好的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Forecasting currency covariances using machine learning tree-based algorithms with low and high prices
We combine machine learning tree-based algorithms with the usage of low and high prices and suggest a new approach to forecasting currency covariances. We apply three algorithms: Random Forest Regression, Gradient Boosting Regression Trees and Extreme Gradient Boosting with a tree learner. We conduct an empirical evaluation of this procedure on the three most heavily traded currency pairs in the Forex market: EUR/USD, USD/JPY and GBP/USD. The forecasts of covariances formulated on the three applied algorithms are predominantly more accurate than the Dynamic Conditional Correlation model based on closing prices. The results of the analyses indicate that the GBRT algorithm is the bestperforming method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Impact of a priori positive information on the results of voting methods Comparison of the accuracy of forecasts bsed on neural networks before and after the outbreak of the COVID-19 pandemic on the example of selected exchange rates Estimation of Yu and Meyer bivariate stochastic volatility model by iterated filtering Sample size in clinical trials – challenges and approaches Alternative investments during turbulent times comparison of dynamic relationship
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1