分布式系统上的TopK排序

Prarthana, N. Karamchandani
{"title":"分布式系统上的TopK排序","authors":"Prarthana, N. Karamchandani","doi":"10.1145/3266276.3266280","DOIUrl":null,"url":null,"abstract":"Ranking has wide range of applications like social choice\\citeSC, recommendation systems\\citeRS, web search\\citeWS, crowd sourcing \\citeCS etc. \\textttTeraSort is a distributed algorithm, commonly used in systems like Hadoop MapReduce, for sorting large datasets. However, in most applications of interest we do not desire complete ordering of data, rather only a few items which have the highest ranks. In this paper we propose Coded Partial Sort to obtain partially sorted data from large datasets using distributed computing systems. We intend to find \\texttttopK ordered elements of a dataset by optimally utilizing servers in distributed network.\\\\ Coded Partial Sort modifies conventional \\textttTeraSort algorithm to remove data irrelevant for partial ordering and applies ideas of \"coding\" to improve run-time performance by significantly decreasing communication load of Uncoded Partial Sort\\citeUs. We empirically evaluate the performance of tCoded and Uncoded Partial Sort on Amazon EC2 clusters for experimental settings of interest.","PeriodicalId":365026,"journal":{"name":"Proceedings of the 2018 on Technologies for the Wireless Edge Workshop","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"TopK Ordering on Distributed Systems\",\"authors\":\"Prarthana, N. Karamchandani\",\"doi\":\"10.1145/3266276.3266280\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ranking has wide range of applications like social choice\\\\citeSC, recommendation systems\\\\citeRS, web search\\\\citeWS, crowd sourcing \\\\citeCS etc. \\\\textttTeraSort is a distributed algorithm, commonly used in systems like Hadoop MapReduce, for sorting large datasets. However, in most applications of interest we do not desire complete ordering of data, rather only a few items which have the highest ranks. In this paper we propose Coded Partial Sort to obtain partially sorted data from large datasets using distributed computing systems. We intend to find \\\\texttttopK ordered elements of a dataset by optimally utilizing servers in distributed network.\\\\\\\\ Coded Partial Sort modifies conventional \\\\textttTeraSort algorithm to remove data irrelevant for partial ordering and applies ideas of \\\"coding\\\" to improve run-time performance by significantly decreasing communication load of Uncoded Partial Sort\\\\citeUs. We empirically evaluate the performance of tCoded and Uncoded Partial Sort on Amazon EC2 clusters for experimental settings of interest.\",\"PeriodicalId\":365026,\"journal\":{\"name\":\"Proceedings of the 2018 on Technologies for the Wireless Edge Workshop\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2018 on Technologies for the Wireless Edge Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3266276.3266280\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2018 on Technologies for the Wireless Edge Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3266276.3266280","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

排名有广泛的应用,如社会选择、推荐系统、网络搜索、众包等。texttterasort是一种分布式算法,通常用于Hadoop MapReduce等系统中,用于对大型数据集进行排序。然而,在大多数感兴趣的应用中,我们不需要数据的完整排序,而只需要排名最高的几个项。在本文中,我们提出编码部分排序,以获得部分排序的数据从大型数据集使用分布式计算系统。我们打算通过优化利用分布式网络中的服务器来找到数据集的\ textttopk有序元素。\\编码部分排序修改了传统的\ texttterasort算法,以删除与部分排序无关的数据,并应用“编码”的思想,通过显着降低未编码部分排序\citeUs的通信负载来提高运行时性能。我们对亚马逊EC2集群上的tCoded和Uncoded部分排序的性能进行了实证评估,以获得感兴趣的实验设置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
TopK Ordering on Distributed Systems
Ranking has wide range of applications like social choice\citeSC, recommendation systems\citeRS, web search\citeWS, crowd sourcing \citeCS etc. \textttTeraSort is a distributed algorithm, commonly used in systems like Hadoop MapReduce, for sorting large datasets. However, in most applications of interest we do not desire complete ordering of data, rather only a few items which have the highest ranks. In this paper we propose Coded Partial Sort to obtain partially sorted data from large datasets using distributed computing systems. We intend to find \texttttopK ordered elements of a dataset by optimally utilizing servers in distributed network.\\ Coded Partial Sort modifies conventional \textttTeraSort algorithm to remove data irrelevant for partial ordering and applies ideas of "coding" to improve run-time performance by significantly decreasing communication load of Uncoded Partial Sort\citeUs. We empirically evaluate the performance of tCoded and Uncoded Partial Sort on Amazon EC2 clusters for experimental settings of interest.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Care to Share?: An Empirical Analysis of Capacity Enhancement by Sharing at the Edge Session details: Topics in Edge Computing Session details: Mobile Edge Computing Session details: Caching Networks Proceedings of the 2018 on Technologies for the Wireless Edge Workshop
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1