牵引逆变器SiC功率模块剩余使用寿命预测的数据驱动状态监测方法

G. Nuzzo, H. Lewitschnig, M. Tuellmann, S. Rzepka, A. Otto
{"title":"牵引逆变器SiC功率模块剩余使用寿命预测的数据驱动状态监测方法","authors":"G. Nuzzo, H. Lewitschnig, M. Tuellmann, S. Rzepka, A. Otto","doi":"10.1109/ICPHM57936.2023.10194131","DOIUrl":null,"url":null,"abstract":"The electric vehicle of the future requires smarter semiconductor power devices to fulfill higher reliability requirements. Several electro-thermal parameters on the chip level can be used to assess the health condition of power electronics systems and to predict the remaining useful life. This paper analyses promising indicators to monitor the degradation level in the chip solder layer of SiC power switches. Active power cycling tests accelerate the aging of a population of SiC power modules for traction inverters. On-state voltage and junction temperature are monitored until the end of life of the devices. The collected data are input to a predictive regression model to estimate the state of health in the power switches. Moreover, a prognostic concept on the system level is introduced. Measurements at operating temperature during the vehicle idle times serve as input to a product-related predictive model. The processor determines the condition of the SiC power switches to issue a maintenance alert and avoid the possible occurrence of unexpected failures. This work provides investigations in data-driven predictive models for wide-bandgap technologies such as SiC power modules and defines an innovative prognostic method on the edge device.","PeriodicalId":169274,"journal":{"name":"2023 IEEE International Conference on Prognostics and Health Management (ICPHM)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Data-driven Condition Monitoring method to predict the Remaining Useful Life of SiC Power Modules for Traction Inverters\",\"authors\":\"G. Nuzzo, H. Lewitschnig, M. Tuellmann, S. Rzepka, A. Otto\",\"doi\":\"10.1109/ICPHM57936.2023.10194131\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The electric vehicle of the future requires smarter semiconductor power devices to fulfill higher reliability requirements. Several electro-thermal parameters on the chip level can be used to assess the health condition of power electronics systems and to predict the remaining useful life. This paper analyses promising indicators to monitor the degradation level in the chip solder layer of SiC power switches. Active power cycling tests accelerate the aging of a population of SiC power modules for traction inverters. On-state voltage and junction temperature are monitored until the end of life of the devices. The collected data are input to a predictive regression model to estimate the state of health in the power switches. Moreover, a prognostic concept on the system level is introduced. Measurements at operating temperature during the vehicle idle times serve as input to a product-related predictive model. The processor determines the condition of the SiC power switches to issue a maintenance alert and avoid the possible occurrence of unexpected failures. This work provides investigations in data-driven predictive models for wide-bandgap technologies such as SiC power modules and defines an innovative prognostic method on the edge device.\",\"PeriodicalId\":169274,\"journal\":{\"name\":\"2023 IEEE International Conference on Prognostics and Health Management (ICPHM)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE International Conference on Prognostics and Health Management (ICPHM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPHM57936.2023.10194131\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Conference on Prognostics and Health Management (ICPHM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPHM57936.2023.10194131","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

未来的电动汽车需要更智能的半导体功率器件来满足更高的可靠性要求。几个芯片级的电热参数可以用来评估电力电子系统的健康状况和预测剩余使用寿命。本文分析了监测SiC功率开关芯片焊料层退化程度的有前途的指标。有功功率循环测试加速了用于牵引逆变器的SiC功率模块的老化。通态电压和结温一直监测到器件的使用寿命结束。将收集到的数据输入到预测回归模型中,以估计电源开关的健康状态。此外,还引入了系统级的预测概念。在车辆怠速期间的工作温度测量作为与产品相关的预测模型的输入。处理器确定SiC电源开关的状态,发出维护警报,避免可能发生的意外故障。这项工作为宽带隙技术(如SiC功率模块)的数据驱动预测模型提供了研究,并定义了边缘设备上的创新预测方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Data-driven Condition Monitoring method to predict the Remaining Useful Life of SiC Power Modules for Traction Inverters
The electric vehicle of the future requires smarter semiconductor power devices to fulfill higher reliability requirements. Several electro-thermal parameters on the chip level can be used to assess the health condition of power electronics systems and to predict the remaining useful life. This paper analyses promising indicators to monitor the degradation level in the chip solder layer of SiC power switches. Active power cycling tests accelerate the aging of a population of SiC power modules for traction inverters. On-state voltage and junction temperature are monitored until the end of life of the devices. The collected data are input to a predictive regression model to estimate the state of health in the power switches. Moreover, a prognostic concept on the system level is introduced. Measurements at operating temperature during the vehicle idle times serve as input to a product-related predictive model. The processor determines the condition of the SiC power switches to issue a maintenance alert and avoid the possible occurrence of unexpected failures. This work provides investigations in data-driven predictive models for wide-bandgap technologies such as SiC power modules and defines an innovative prognostic method on the edge device.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Modeling Operational Risk to Improve Reliability of Unmanned Aerial Vehicles Optimizing Flight Control of Unmanned Aerial Vehicles with Physics-Based Reliability Models A Comprehensive Approach for Gearbox Fault Detection and Diagnosis Using Sequential Neural Networks Bearing compound fault diagnosis based on enhanced variational mode extraction algorithm Fault State Prediction Model of Repaired Equipment Considering Maintenance Effect
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1