{"title":"基于改进涡点阵法的梯形机翼气动计算","authors":"J. Nagler","doi":"10.37394/232022.2022.2.14","DOIUrl":null,"url":null,"abstract":"This paper presents, aerodynamics coefficients calculation (Lifting & drag coefficients, pressure central location) of Trapeze wing shape configurations for different aspect ratios (ARs) values by using improved vortex lattice method (VLM), compared with finite-wing and slender body theories. The planar wing was divided into N panels of the size: 6X6 with trapezoid shape panels. As expected, for high ARs the VLM solution for the lifting coefficient is coincided with the finite wing theory whereas for small ARs (<1) it is coincided with the slender body theory (~1). Afterwards, we obtained that the calculated VLM induced drag becomes closer to the finitewing theory as the AR value is increased.","PeriodicalId":443735,"journal":{"name":"DESIGN, CONSTRUCTION, MAINTENANCE","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Trapeze Wing Aerodynamics Calculations Based on Improved Vortex Lattice Method\",\"authors\":\"J. Nagler\",\"doi\":\"10.37394/232022.2022.2.14\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents, aerodynamics coefficients calculation (Lifting & drag coefficients, pressure central location) of Trapeze wing shape configurations for different aspect ratios (ARs) values by using improved vortex lattice method (VLM), compared with finite-wing and slender body theories. The planar wing was divided into N panels of the size: 6X6 with trapezoid shape panels. As expected, for high ARs the VLM solution for the lifting coefficient is coincided with the finite wing theory whereas for small ARs (<1) it is coincided with the slender body theory (~1). Afterwards, we obtained that the calculated VLM induced drag becomes closer to the finitewing theory as the AR value is increased.\",\"PeriodicalId\":443735,\"journal\":{\"name\":\"DESIGN, CONSTRUCTION, MAINTENANCE\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-04-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"DESIGN, CONSTRUCTION, MAINTENANCE\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37394/232022.2022.2.14\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"DESIGN, CONSTRUCTION, MAINTENANCE","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37394/232022.2022.2.14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On Trapeze Wing Aerodynamics Calculations Based on Improved Vortex Lattice Method
This paper presents, aerodynamics coefficients calculation (Lifting & drag coefficients, pressure central location) of Trapeze wing shape configurations for different aspect ratios (ARs) values by using improved vortex lattice method (VLM), compared with finite-wing and slender body theories. The planar wing was divided into N panels of the size: 6X6 with trapezoid shape panels. As expected, for high ARs the VLM solution for the lifting coefficient is coincided with the finite wing theory whereas for small ARs (<1) it is coincided with the slender body theory (~1). Afterwards, we obtained that the calculated VLM induced drag becomes closer to the finitewing theory as the AR value is increased.