UWB系统中基于压缩感知的盲NBI缓解

S. Alawsh, A. Muqaibel
{"title":"UWB系统中基于压缩感知的盲NBI缓解","authors":"S. Alawsh, A. Muqaibel","doi":"10.1109/ICSIPA.2013.6708047","DOIUrl":null,"url":null,"abstract":"Ultra-wideband (UWB) radios are candidates for high data rate and power-constrained applications such as wireless sensor and body area networks. Compressive sensing (CS) is a promising signal processing solution which can reduce the sampling requirements as well as avoid the narrowband interference (NBI) in UWB systems by utilizing the sparsity of the transmitted signal. In this paper, we investigate the BER performance for mitigation of multiple NBI in CS based UWB systems. Simulation shows that at high signal to interference ration (SIR), the performance enhances as the bandwidth of the NBI increases. As the UWB signal's bandwidth increases, the number of the notched measurements lessens and we preserve the important information about the transmitted pulse. Additionally, the bandwidth occupied by the NBI relative to the center frequency of the transmitted pulse determines the amount of the degradation in the performance. In addition, the paper studies the impact of the transmitted pulse shape.","PeriodicalId":440373,"journal":{"name":"2013 IEEE International Conference on Signal and Image Processing Applications","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Compressive sensing for blind NBI mitigation in UWB systems\",\"authors\":\"S. Alawsh, A. Muqaibel\",\"doi\":\"10.1109/ICSIPA.2013.6708047\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ultra-wideband (UWB) radios are candidates for high data rate and power-constrained applications such as wireless sensor and body area networks. Compressive sensing (CS) is a promising signal processing solution which can reduce the sampling requirements as well as avoid the narrowband interference (NBI) in UWB systems by utilizing the sparsity of the transmitted signal. In this paper, we investigate the BER performance for mitigation of multiple NBI in CS based UWB systems. Simulation shows that at high signal to interference ration (SIR), the performance enhances as the bandwidth of the NBI increases. As the UWB signal's bandwidth increases, the number of the notched measurements lessens and we preserve the important information about the transmitted pulse. Additionally, the bandwidth occupied by the NBI relative to the center frequency of the transmitted pulse determines the amount of the degradation in the performance. In addition, the paper studies the impact of the transmitted pulse shape.\",\"PeriodicalId\":440373,\"journal\":{\"name\":\"2013 IEEE International Conference on Signal and Image Processing Applications\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE International Conference on Signal and Image Processing Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSIPA.2013.6708047\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Signal and Image Processing Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSIPA.2013.6708047","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

超宽带(UWB)无线电是高数据速率和功率受限应用的候选者,例如无线传感器和体域网络。压缩感知(CS)是一种很有前途的信号处理解决方案,它可以利用传输信号的稀疏性,降低UWB系统的采样要求,避免窄带干扰(NBI)。在本文中,我们研究了基于CS的UWB系统中缓解多个NBI的误码率性能。仿真结果表明,在高信干扰比(SIR)条件下,随着NBI带宽的增大,性能得到提高。随着超宽带信号带宽的增加,陷波测量的次数减少,我们保留了传输脉冲的重要信息。此外,相对于传输脉冲的中心频率,NBI占用的带宽决定了性能下降的程度。此外,本文还研究了传输脉冲形状的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Compressive sensing for blind NBI mitigation in UWB systems
Ultra-wideband (UWB) radios are candidates for high data rate and power-constrained applications such as wireless sensor and body area networks. Compressive sensing (CS) is a promising signal processing solution which can reduce the sampling requirements as well as avoid the narrowband interference (NBI) in UWB systems by utilizing the sparsity of the transmitted signal. In this paper, we investigate the BER performance for mitigation of multiple NBI in CS based UWB systems. Simulation shows that at high signal to interference ration (SIR), the performance enhances as the bandwidth of the NBI increases. As the UWB signal's bandwidth increases, the number of the notched measurements lessens and we preserve the important information about the transmitted pulse. Additionally, the bandwidth occupied by the NBI relative to the center frequency of the transmitted pulse determines the amount of the degradation in the performance. In addition, the paper studies the impact of the transmitted pulse shape.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
List of reviewers Multi-Level View Synthesis (MLVS) based on Depth Image Layer Separation (DILS) algorithm for multi-camera view system Mouth covered detection for yawn Depth Image Layers Separation (DILS) algorithm of image view synthesis based on stereo vision Accurate videogrammetric data for human limb movement research
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1