{"title":"LTCC膜具有集成加热结构,温度传感器和应变片","authors":"N. Gutzeit, J. Muller, C. Reinlein, S. Gebhardt","doi":"10.1109/ISSE.2012.6273169","DOIUrl":null,"url":null,"abstract":"In this paper the challenging manufacturing process of a deformable mirror for the wave front correction of a high energy laser is described. During this process the LTCC membrane as the base component with integrated sensors must endure several postfire processes at temperatures of up to 900°C without any degradation of the sensors' characteristics. In order to optimize the sensors, various combinations of resistor and conductor pastes and different geometries are characterized. The usability and the performance of the sensor elements after temperature treatment are investigated by measuring the resistance and its resistance temperature characteristic.","PeriodicalId":277579,"journal":{"name":"2012 35th International Spring Seminar on Electronics Technology","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"LTCC membranes With integrated heating structures, temperature sensors and strain gauges\",\"authors\":\"N. Gutzeit, J. Muller, C. Reinlein, S. Gebhardt\",\"doi\":\"10.1109/ISSE.2012.6273169\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper the challenging manufacturing process of a deformable mirror for the wave front correction of a high energy laser is described. During this process the LTCC membrane as the base component with integrated sensors must endure several postfire processes at temperatures of up to 900°C without any degradation of the sensors' characteristics. In order to optimize the sensors, various combinations of resistor and conductor pastes and different geometries are characterized. The usability and the performance of the sensor elements after temperature treatment are investigated by measuring the resistance and its resistance temperature characteristic.\",\"PeriodicalId\":277579,\"journal\":{\"name\":\"2012 35th International Spring Seminar on Electronics Technology\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 35th International Spring Seminar on Electronics Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSE.2012.6273169\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 35th International Spring Seminar on Electronics Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSE.2012.6273169","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
LTCC membranes With integrated heating structures, temperature sensors and strain gauges
In this paper the challenging manufacturing process of a deformable mirror for the wave front correction of a high energy laser is described. During this process the LTCC membrane as the base component with integrated sensors must endure several postfire processes at temperatures of up to 900°C without any degradation of the sensors' characteristics. In order to optimize the sensors, various combinations of resistor and conductor pastes and different geometries are characterized. The usability and the performance of the sensor elements after temperature treatment are investigated by measuring the resistance and its resistance temperature characteristic.