柏青哥分配:dag结构的主题相关性混合模型

Wei Li, A. McCallum
{"title":"柏青哥分配:dag结构的主题相关性混合模型","authors":"Wei Li, A. McCallum","doi":"10.1145/1143844.1143917","DOIUrl":null,"url":null,"abstract":"Latent Dirichlet allocation (LDA) and other related topic models are increasingly popular tools for summarization and manifold discovery in discrete data. However, LDA does not capture correlations between topics. In this paper, we introduce the pachinko allocation model (PAM), which captures arbitrary, nested, and possibly sparse correlations between topics using a directed acyclic graph (DAG). The leaves of the DAG represent individual words in the vocabulary, while each interior node represents a correlation among its children, which may be words or other interior nodes (topics). PAM provides a flexible alternative to recent work by Blei and Lafferty (2006), which captures correlations only between pairs of topics. Using text data from newsgroups, historic NIPS proceedings and other research paper corpora, we show improved performance of PAM in document classification, likelihood of held-out data, the ability to support finer-grained topics, and topical keyword coherence.","PeriodicalId":124011,"journal":{"name":"Proceedings of the 23rd international conference on Machine learning","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"703","resultStr":"{\"title\":\"Pachinko allocation: DAG-structured mixture models of topic correlations\",\"authors\":\"Wei Li, A. McCallum\",\"doi\":\"10.1145/1143844.1143917\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Latent Dirichlet allocation (LDA) and other related topic models are increasingly popular tools for summarization and manifold discovery in discrete data. However, LDA does not capture correlations between topics. In this paper, we introduce the pachinko allocation model (PAM), which captures arbitrary, nested, and possibly sparse correlations between topics using a directed acyclic graph (DAG). The leaves of the DAG represent individual words in the vocabulary, while each interior node represents a correlation among its children, which may be words or other interior nodes (topics). PAM provides a flexible alternative to recent work by Blei and Lafferty (2006), which captures correlations only between pairs of topics. Using text data from newsgroups, historic NIPS proceedings and other research paper corpora, we show improved performance of PAM in document classification, likelihood of held-out data, the ability to support finer-grained topics, and topical keyword coherence.\",\"PeriodicalId\":124011,\"journal\":{\"name\":\"Proceedings of the 23rd international conference on Machine learning\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"703\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 23rd international conference on Machine learning\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1143844.1143917\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 23rd international conference on Machine learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1143844.1143917","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 703

摘要

潜在狄利克雷分配(Latent Dirichlet allocation, LDA)和其他相关的主题模型是离散数据总结和流形发现日益流行的工具。但是,LDA不能捕获主题之间的相关性。在本文中,我们引入了弹珠机分配模型(PAM),该模型使用有向无环图(DAG)捕获主题之间任意的、嵌套的和可能稀疏的相关性。DAG的叶子表示词汇表中的单个单词,而每个内部节点表示其子节点之间的相关性,这些子节点可能是单词或其他内部节点(主题)。PAM为Blei和Lafferty(2006)最近的工作提供了一种灵活的替代方案,后者仅捕获主题对之间的相关性。使用来自新闻组、历史NIPS会议记录和其他研究论文语料库的文本数据,我们展示了PAM在文档分类、保留数据的可能性、支持细粒度主题的能力和主题关键字一致性方面的改进性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Pachinko allocation: DAG-structured mixture models of topic correlations
Latent Dirichlet allocation (LDA) and other related topic models are increasingly popular tools for summarization and manifold discovery in discrete data. However, LDA does not capture correlations between topics. In this paper, we introduce the pachinko allocation model (PAM), which captures arbitrary, nested, and possibly sparse correlations between topics using a directed acyclic graph (DAG). The leaves of the DAG represent individual words in the vocabulary, while each interior node represents a correlation among its children, which may be words or other interior nodes (topics). PAM provides a flexible alternative to recent work by Blei and Lafferty (2006), which captures correlations only between pairs of topics. Using text data from newsgroups, historic NIPS proceedings and other research paper corpora, we show improved performance of PAM in document classification, likelihood of held-out data, the ability to support finer-grained topics, and topical keyword coherence.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
On a theory of learning with similarity functions Bayesian learning of measurement and structural models Predictive search distributions Data association for topic intensity tracking Feature value acquisition in testing: a sequential batch test algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1