A. Rahmani, M. Haghbayan, A. Kanduri, Awet Yemane Weldezion, P. Liljeberg, J. Plosila, A. Jantsch, H. Tenhunen
{"title":"暗硅时代多核平台的动态电源管理:多目标控制方法","authors":"A. Rahmani, M. Haghbayan, A. Kanduri, Awet Yemane Weldezion, P. Liljeberg, J. Plosila, A. Jantsch, H. Tenhunen","doi":"10.1109/ISLPED.2015.7273517","DOIUrl":null,"url":null,"abstract":"Power management of NoC-based many-core systems with runtime application mapping becomes more challenging in the dark silicon era. It necessitates a multi-objective control approach to consider an upper limit on total power consumption, dynamic behaviour of workloads, processing elements utilization, per-core power consumption, and load on network-on-chip. In this paper, we propose a multi-objective dynamic power management method that simultaneously considers all of these parameters. Fine-grained voltage and frequency scaling, including near-threshold operation, and per-core power gating are utilized to optimize the performance. In addition, a disturbance rejecter is designed that proactively scales down activity in running applications when a new application commences execution, to prevent sharp power budget violations. Simulations of dynamic workloads and mixed time-critical application profiles show that our method is effective in honoring the power budget while considerably boosting the system throughput and reducing power budget violation, compared to the state-of-the-art power management policies.","PeriodicalId":421236,"journal":{"name":"2015 IEEE/ACM International Symposium on Low Power Electronics and Design (ISLPED)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"48","resultStr":"{\"title\":\"Dynamic power management for many-core platforms in the dark silicon era: A multi-objective control approach\",\"authors\":\"A. Rahmani, M. Haghbayan, A. Kanduri, Awet Yemane Weldezion, P. Liljeberg, J. Plosila, A. Jantsch, H. Tenhunen\",\"doi\":\"10.1109/ISLPED.2015.7273517\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Power management of NoC-based many-core systems with runtime application mapping becomes more challenging in the dark silicon era. It necessitates a multi-objective control approach to consider an upper limit on total power consumption, dynamic behaviour of workloads, processing elements utilization, per-core power consumption, and load on network-on-chip. In this paper, we propose a multi-objective dynamic power management method that simultaneously considers all of these parameters. Fine-grained voltage and frequency scaling, including near-threshold operation, and per-core power gating are utilized to optimize the performance. In addition, a disturbance rejecter is designed that proactively scales down activity in running applications when a new application commences execution, to prevent sharp power budget violations. Simulations of dynamic workloads and mixed time-critical application profiles show that our method is effective in honoring the power budget while considerably boosting the system throughput and reducing power budget violation, compared to the state-of-the-art power management policies.\",\"PeriodicalId\":421236,\"journal\":{\"name\":\"2015 IEEE/ACM International Symposium on Low Power Electronics and Design (ISLPED)\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"48\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE/ACM International Symposium on Low Power Electronics and Design (ISLPED)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISLPED.2015.7273517\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE/ACM International Symposium on Low Power Electronics and Design (ISLPED)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISLPED.2015.7273517","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Dynamic power management for many-core platforms in the dark silicon era: A multi-objective control approach
Power management of NoC-based many-core systems with runtime application mapping becomes more challenging in the dark silicon era. It necessitates a multi-objective control approach to consider an upper limit on total power consumption, dynamic behaviour of workloads, processing elements utilization, per-core power consumption, and load on network-on-chip. In this paper, we propose a multi-objective dynamic power management method that simultaneously considers all of these parameters. Fine-grained voltage and frequency scaling, including near-threshold operation, and per-core power gating are utilized to optimize the performance. In addition, a disturbance rejecter is designed that proactively scales down activity in running applications when a new application commences execution, to prevent sharp power budget violations. Simulations of dynamic workloads and mixed time-critical application profiles show that our method is effective in honoring the power budget while considerably boosting the system throughput and reducing power budget violation, compared to the state-of-the-art power management policies.