多级多积分聚类方法在快速风力机尾迹模拟中涡粒子相互作用处理中的实现

Joseph Saverin, D. Marten, G. Pechlivanoglou, C. Paschereit, A. V. Garrel
{"title":"多级多积分聚类方法在快速风力机尾迹模拟中涡粒子相互作用处理中的实现","authors":"Joseph Saverin, D. Marten, G. Pechlivanoglou, C. Paschereit, A. V. Garrel","doi":"10.1115/GT2018-76554","DOIUrl":null,"url":null,"abstract":"A method for the treatment of the evolution of the wake of aerodynamic bodies has been implemented. A vortex particle method approach has been used whereby the flow field is discretized into numerical volumes which possess a given circulation. A lifting line formulation is used to determine the circulation of the trailing and shed vortex elements. Upon their release vortex particles are allowed to freely convect under the action of the blade, the freestream and other particles. Induced velocities are calculated with a regularized form of the Biot-Savart kernel, adapted for vortex particles. Vortex trajectories are integrated in a Lagrangian sense. Provision is made in the model for the rate of change of the circulation vector and for viscous particle interaction; however these features are not exploited in this work. The validity of the model is tested by comparing results of the numerical simulation to the experimental measurements of the Mexico rotor. A range of tip speed ratios are investigated and the blade loading and induced wake velocities are compared to experiment and finite-volume numerical models.\n The computational expense of this method scales quadratically with the number of released wake particles N. This results in an unacceptable computational expense after a limited simulation time. A recently developed multilevel algorithm has been implemented to overcome this computational expense. This method approximates the Biot-Savart kernel in the far field by using polynomial interpolation onto a structured grid node system. The error of this approximation is seen to be arbitrarily controlled by the polynomial order of the interpolation. It is demonstrated that by using this method the computational expense scales linearly. The model’s ability to quickly produce results of comparable accuracy to finite volume simulations is illustrated and emphasizes the opportunity for industry to move from low fidelity, less accurate blade-element-momentum methods towards higher fidelity free vortex wake models while keeping the advantage of short problem turnaround times.","PeriodicalId":412490,"journal":{"name":"Volume 9: Oil and Gas Applications; Supercritical CO2 Power Cycles; Wind Energy","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Implementation of the Multi-Level Multi-Integration Cluster Method to the Treatment of Vortex Particle Interactions for Fast Wind Turbine Wake Simulations\",\"authors\":\"Joseph Saverin, D. Marten, G. Pechlivanoglou, C. Paschereit, A. V. Garrel\",\"doi\":\"10.1115/GT2018-76554\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A method for the treatment of the evolution of the wake of aerodynamic bodies has been implemented. A vortex particle method approach has been used whereby the flow field is discretized into numerical volumes which possess a given circulation. A lifting line formulation is used to determine the circulation of the trailing and shed vortex elements. Upon their release vortex particles are allowed to freely convect under the action of the blade, the freestream and other particles. Induced velocities are calculated with a regularized form of the Biot-Savart kernel, adapted for vortex particles. Vortex trajectories are integrated in a Lagrangian sense. Provision is made in the model for the rate of change of the circulation vector and for viscous particle interaction; however these features are not exploited in this work. The validity of the model is tested by comparing results of the numerical simulation to the experimental measurements of the Mexico rotor. A range of tip speed ratios are investigated and the blade loading and induced wake velocities are compared to experiment and finite-volume numerical models.\\n The computational expense of this method scales quadratically with the number of released wake particles N. This results in an unacceptable computational expense after a limited simulation time. A recently developed multilevel algorithm has been implemented to overcome this computational expense. This method approximates the Biot-Savart kernel in the far field by using polynomial interpolation onto a structured grid node system. The error of this approximation is seen to be arbitrarily controlled by the polynomial order of the interpolation. It is demonstrated that by using this method the computational expense scales linearly. The model’s ability to quickly produce results of comparable accuracy to finite volume simulations is illustrated and emphasizes the opportunity for industry to move from low fidelity, less accurate blade-element-momentum methods towards higher fidelity free vortex wake models while keeping the advantage of short problem turnaround times.\",\"PeriodicalId\":412490,\"journal\":{\"name\":\"Volume 9: Oil and Gas Applications; Supercritical CO2 Power Cycles; Wind Energy\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 9: Oil and Gas Applications; Supercritical CO2 Power Cycles; Wind Energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/GT2018-76554\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 9: Oil and Gas Applications; Supercritical CO2 Power Cycles; Wind Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/GT2018-76554","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

提出了一种处理气动体尾迹演化的方法。采用涡粒法将流场离散成具有给定循环的数值体。采用升力线公式来确定尾涡和落涡元件的环流。释放后,旋涡粒子在叶片、自由流和其他粒子的作用下自由对流。感应速度是用一种正则形式的Biot-Savart核来计算的,适用于涡旋粒子。涡旋轨迹在拉格朗日意义上被整合。在模型中规定了循环矢量的变化率和粘性粒子相互作用;然而,这些特性在本工作中没有被利用。将数值模拟结果与墨西哥转子的实验测量结果进行对比,验证了模型的有效性。研究了一定范围的叶尖速比,并将叶片载荷和诱导尾迹速度与实验和有限体积数值模型进行了比较。该方法的计算费用与释放的尾流粒子n的数量成二次比例,这导致在有限的模拟时间后的计算费用是不可接受的。为了克服这一计算开销,最近开发了一种多层算法。该方法通过在结构化网格节点系统上使用多项式插值来逼近远场的Biot-Savart核。这种近似的误差可以看作是由插值的多项式阶任意控制的。结果表明,采用这种方法,计算费用呈线性增长。该模型能够快速产生与有限体积模拟相当精度的结果,并强调了工业从低保真度、精度较低的叶片元素动量方法转向高保真度的自由涡尾流模型的机会,同时保持了问题周转时间短的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Implementation of the Multi-Level Multi-Integration Cluster Method to the Treatment of Vortex Particle Interactions for Fast Wind Turbine Wake Simulations
A method for the treatment of the evolution of the wake of aerodynamic bodies has been implemented. A vortex particle method approach has been used whereby the flow field is discretized into numerical volumes which possess a given circulation. A lifting line formulation is used to determine the circulation of the trailing and shed vortex elements. Upon their release vortex particles are allowed to freely convect under the action of the blade, the freestream and other particles. Induced velocities are calculated with a regularized form of the Biot-Savart kernel, adapted for vortex particles. Vortex trajectories are integrated in a Lagrangian sense. Provision is made in the model for the rate of change of the circulation vector and for viscous particle interaction; however these features are not exploited in this work. The validity of the model is tested by comparing results of the numerical simulation to the experimental measurements of the Mexico rotor. A range of tip speed ratios are investigated and the blade loading and induced wake velocities are compared to experiment and finite-volume numerical models. The computational expense of this method scales quadratically with the number of released wake particles N. This results in an unacceptable computational expense after a limited simulation time. A recently developed multilevel algorithm has been implemented to overcome this computational expense. This method approximates the Biot-Savart kernel in the far field by using polynomial interpolation onto a structured grid node system. The error of this approximation is seen to be arbitrarily controlled by the polynomial order of the interpolation. It is demonstrated that by using this method the computational expense scales linearly. The model’s ability to quickly produce results of comparable accuracy to finite volume simulations is illustrated and emphasizes the opportunity for industry to move from low fidelity, less accurate blade-element-momentum methods towards higher fidelity free vortex wake models while keeping the advantage of short problem turnaround times.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Use of Departure Functions to Estimate Deviation of a Real Gas From the Ideal Gas Model Design Considerations for High Pressure Boil-Off Gas (BOG) Centrifugal Compressors With Synchronous Motor Drives in LNG Liquefaction Plants An Overview of Initial Operational Experience With the Closed-Loop sCO2 Test Facility at Cranfield University Wet Gas Compressor Modeling and Performance Scaling The Effect of Blade Deflections on the Torsional Dynamic of a Wind Turbine
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1