Runjie Zhang, K. Mazumdar, B. Meyer, Ke Wang, K. Skadron, M. Stan
{"title":"多层3D-IC充电再循环输电网络中的瞬态电压噪声","authors":"Runjie Zhang, K. Mazumdar, B. Meyer, Ke Wang, K. Skadron, M. Stan","doi":"10.1109/ISLPED.2015.7273506","DOIUrl":null,"url":null,"abstract":"Aside from the benefits it brings, 3D-IC technology inevitably exacerbates the difficulty of power delivery with volumetrically increasing power consumption. Recent work managed to “recycle” current within the 3D stack by linking the different layers' supply/ground nets into a series connection. This charge-recycled (also known as voltage-stacked, or V-S) scheme provides a scalable solution for 3D-IC's power delivery because it supports an arbitrary number of layers with a constant off-chip current demand. Although prior work has studied the circuit implementation of a V-S power delivery network (PDN) and its current-reduction benefits, a whole-system evaluation of V-S PDNs' transient voltage noise and a noise comparison between the V-S PDN and the traditional PDN are missing. In this paper, we build a system-level model to examine voltage-stacked 3D-ICs' transient noise and explore the impact of different PDN design parameters and workload behaviors. Our results show that compared with the traditional PDN scheme, V-S provides stronger isolation for cross-layer noise interference, which in turn grants higher performance benefits for run-time noise mitigation techniques, such as dynamic margin adaptation. We observe that, compared with traditional PDNs, V-S PDNs provide up to 60% lower transient noise in the worst-case scenario. Furthermore, we show that V-S PDNs significantly reduce the packaging cost, because their noise is almost insensitive to the package impedance (e.g., a 300% impedance increase only raises worst-case noise by less than 0.3% Vdd).","PeriodicalId":421236,"journal":{"name":"2015 IEEE/ACM International Symposium on Low Power Electronics and Design (ISLPED)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Transient voltage noise in charge-recycled power delivery networks for many-layer 3D-IC\",\"authors\":\"Runjie Zhang, K. Mazumdar, B. Meyer, Ke Wang, K. Skadron, M. Stan\",\"doi\":\"10.1109/ISLPED.2015.7273506\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aside from the benefits it brings, 3D-IC technology inevitably exacerbates the difficulty of power delivery with volumetrically increasing power consumption. Recent work managed to “recycle” current within the 3D stack by linking the different layers' supply/ground nets into a series connection. This charge-recycled (also known as voltage-stacked, or V-S) scheme provides a scalable solution for 3D-IC's power delivery because it supports an arbitrary number of layers with a constant off-chip current demand. Although prior work has studied the circuit implementation of a V-S power delivery network (PDN) and its current-reduction benefits, a whole-system evaluation of V-S PDNs' transient voltage noise and a noise comparison between the V-S PDN and the traditional PDN are missing. In this paper, we build a system-level model to examine voltage-stacked 3D-ICs' transient noise and explore the impact of different PDN design parameters and workload behaviors. Our results show that compared with the traditional PDN scheme, V-S provides stronger isolation for cross-layer noise interference, which in turn grants higher performance benefits for run-time noise mitigation techniques, such as dynamic margin adaptation. We observe that, compared with traditional PDNs, V-S PDNs provide up to 60% lower transient noise in the worst-case scenario. Furthermore, we show that V-S PDNs significantly reduce the packaging cost, because their noise is almost insensitive to the package impedance (e.g., a 300% impedance increase only raises worst-case noise by less than 0.3% Vdd).\",\"PeriodicalId\":421236,\"journal\":{\"name\":\"2015 IEEE/ACM International Symposium on Low Power Electronics and Design (ISLPED)\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE/ACM International Symposium on Low Power Electronics and Design (ISLPED)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISLPED.2015.7273506\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE/ACM International Symposium on Low Power Electronics and Design (ISLPED)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISLPED.2015.7273506","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Transient voltage noise in charge-recycled power delivery networks for many-layer 3D-IC
Aside from the benefits it brings, 3D-IC technology inevitably exacerbates the difficulty of power delivery with volumetrically increasing power consumption. Recent work managed to “recycle” current within the 3D stack by linking the different layers' supply/ground nets into a series connection. This charge-recycled (also known as voltage-stacked, or V-S) scheme provides a scalable solution for 3D-IC's power delivery because it supports an arbitrary number of layers with a constant off-chip current demand. Although prior work has studied the circuit implementation of a V-S power delivery network (PDN) and its current-reduction benefits, a whole-system evaluation of V-S PDNs' transient voltage noise and a noise comparison between the V-S PDN and the traditional PDN are missing. In this paper, we build a system-level model to examine voltage-stacked 3D-ICs' transient noise and explore the impact of different PDN design parameters and workload behaviors. Our results show that compared with the traditional PDN scheme, V-S provides stronger isolation for cross-layer noise interference, which in turn grants higher performance benefits for run-time noise mitigation techniques, such as dynamic margin adaptation. We observe that, compared with traditional PDNs, V-S PDNs provide up to 60% lower transient noise in the worst-case scenario. Furthermore, we show that V-S PDNs significantly reduce the packaging cost, because their noise is almost insensitive to the package impedance (e.g., a 300% impedance increase only raises worst-case noise by less than 0.3% Vdd).