基于DWT和非负矩阵分解的盲图像水印分析

Wei Sun, Wei Lu
{"title":"基于DWT和非负矩阵分解的盲图像水印分析","authors":"Wei Sun, Wei Lu","doi":"10.1109/CCPR.2008.71","DOIUrl":null,"url":null,"abstract":"This paper proposed a blind digital image watermark analysis algorithm, which is to analyze watermarks in host images without any prior-watermarking embedding and detection information. In the proposed algorithm, DWT is firstly used to decompose images into detail subbands, and noise visibility function is used to enhance the detail subbands, then non-negative matrix factorization (NMF) is used to reveal the intrinsic features in host images. Support vector machines (SVMs) are finally used to classify these characteristics. Numerical experimental results show that the proposed scheme describes the intrinsic statistical characteristics and the proposed watermark analysis is effective.","PeriodicalId":292956,"journal":{"name":"2008 Chinese Conference on Pattern Recognition","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Blind Image Watermark Analysis using DWT and Non-Negative Matrix Factorization\",\"authors\":\"Wei Sun, Wei Lu\",\"doi\":\"10.1109/CCPR.2008.71\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposed a blind digital image watermark analysis algorithm, which is to analyze watermarks in host images without any prior-watermarking embedding and detection information. In the proposed algorithm, DWT is firstly used to decompose images into detail subbands, and noise visibility function is used to enhance the detail subbands, then non-negative matrix factorization (NMF) is used to reveal the intrinsic features in host images. Support vector machines (SVMs) are finally used to classify these characteristics. Numerical experimental results show that the proposed scheme describes the intrinsic statistical characteristics and the proposed watermark analysis is effective.\",\"PeriodicalId\":292956,\"journal\":{\"name\":\"2008 Chinese Conference on Pattern Recognition\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 Chinese Conference on Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCPR.2008.71\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Chinese Conference on Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCPR.2008.71","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种盲数字图像水印分析算法,该算法在没有任何先验水印嵌入和检测信息的情况下对主图像中的水印进行分析。该算法首先利用小波变换(DWT)将图像分解为细节子带,利用噪声可见性函数对细节子带进行增强,然后利用非负矩阵分解(NMF)揭示主图像的内在特征。最后使用支持向量机(svm)对这些特征进行分类。数值实验结果表明,该方法描述了水印的固有统计特征,水印分析方法是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Blind Image Watermark Analysis using DWT and Non-Negative Matrix Factorization
This paper proposed a blind digital image watermark analysis algorithm, which is to analyze watermarks in host images without any prior-watermarking embedding and detection information. In the proposed algorithm, DWT is firstly used to decompose images into detail subbands, and noise visibility function is used to enhance the detail subbands, then non-negative matrix factorization (NMF) is used to reveal the intrinsic features in host images. Support vector machines (SVMs) are finally used to classify these characteristics. Numerical experimental results show that the proposed scheme describes the intrinsic statistical characteristics and the proposed watermark analysis is effective.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Novel Gait Recognition Method Based on Standard Deviation Energy Image A New Method for Facial Beauty Assessment Content-Based Semantic Indexing of Image using Fuzzy Support Vector Machines Stochastic Segment Model Decoding Algorithm Based on Neighboring Segments and its Application in LVCSR Study on Highlights Detection in Soccer Video Based on the Location of Slow Motion Replay and Goal Net Recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1