网页多标签自适应体裁分类

Chaker Jebari
{"title":"网页多标签自适应体裁分类","authors":"Chaker Jebari","doi":"10.1109/ICMLA.2012.106","DOIUrl":null,"url":null,"abstract":"This paper proposes a new centroid-based approach to classify web pages by genre using character ngrams extracted from different information sources such as URL, title, headings and anchors. To deal with the complexity of web pages and the rapid evolution of web genres, our approach implements a multi-label and adaptive classification scheme in which web pages are classified one by one and each web page can affect more than one genre. According to the similarity between the new page and each genre centroid, our approach either adapts the genre centroid under consideration or considers the new page as noise page and discards it. The experiment results show that our approach is very fast and achieves better results than existing multi-label classifiers.","PeriodicalId":157399,"journal":{"name":"2012 11th International Conference on Machine Learning and Applications","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"A Multi-label and Adaptive Genre Classification of Web Pages\",\"authors\":\"Chaker Jebari\",\"doi\":\"10.1109/ICMLA.2012.106\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a new centroid-based approach to classify web pages by genre using character ngrams extracted from different information sources such as URL, title, headings and anchors. To deal with the complexity of web pages and the rapid evolution of web genres, our approach implements a multi-label and adaptive classification scheme in which web pages are classified one by one and each web page can affect more than one genre. According to the similarity between the new page and each genre centroid, our approach either adapts the genre centroid under consideration or considers the new page as noise page and discards it. The experiment results show that our approach is very fast and achieves better results than existing multi-label classifiers.\",\"PeriodicalId\":157399,\"journal\":{\"name\":\"2012 11th International Conference on Machine Learning and Applications\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 11th International Conference on Machine Learning and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLA.2012.106\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 11th International Conference on Machine Learning and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2012.106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

本文提出了一种新的基于质心的网页分类方法,该方法利用从URL、标题、标题和锚点等不同信息源中提取的字符图对网页进行类型分类。为了处理网页的复杂性和网页类型的快速演变,我们的方法实现了一个多标签和自适应的分类方案,其中网页被一个一个地分类,每个网页可以影响多个类型。根据新页面与每个类型质心的相似度,我们的方法要么适应正在考虑的类型质心,要么将新页面视为噪声页面并丢弃。实验结果表明,我们的方法速度非常快,并且比现有的多标签分类器取得了更好的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Multi-label and Adaptive Genre Classification of Web Pages
This paper proposes a new centroid-based approach to classify web pages by genre using character ngrams extracted from different information sources such as URL, title, headings and anchors. To deal with the complexity of web pages and the rapid evolution of web genres, our approach implements a multi-label and adaptive classification scheme in which web pages are classified one by one and each web page can affect more than one genre. According to the similarity between the new page and each genre centroid, our approach either adapts the genre centroid under consideration or considers the new page as noise page and discards it. The experiment results show that our approach is very fast and achieves better results than existing multi-label classifiers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Excitation Current Forecasting for Reactive Power Compensation in Synchronous Motors: A Data Mining Approach Deep Structure Learning: Beyond Connectionist Approaches Using Twitter Content to Predict Psychopathy A Hybrid Approach to Coping with High Dimensionality and Class Imbalance for Software Defect Prediction O-linked Glycosylation Site Prediction Using Ensemble of Graphical Models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1