基于多尺度局部-全局超像素对比度的显著目标检测

Xiaolong Zhang, Jia Hu, Xin Xu, Li Chen
{"title":"基于多尺度局部-全局超像素对比度的显著目标检测","authors":"Xiaolong Zhang, Jia Hu, Xin Xu, Li Chen","doi":"10.1109/ICIEA.2016.7603775","DOIUrl":null,"url":null,"abstract":"The goal of salient object detection is to estimate the regions which are most likely to attract human's visual attention. As an important image preprocessing procedure to reduce the computational complexity, salient object detection is still a challenging problem in computer vision. In this paper, we proposed a salient object detection model by integrating local and global superpixel contrast at multiple scales. Three features are computed to estimate the saliency of superpixel. Two optimization measures are utilized to refine the resulting saliency map. Extensive experiments with the state-of-the-art saliency models on three public datasets demonstrate the effectiveness of the proposed model.","PeriodicalId":283114,"journal":{"name":"2016 IEEE 11th Conference on Industrial Electronics and Applications (ICIEA)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Salient object detection via multi-scale local-global superpixel contrast\",\"authors\":\"Xiaolong Zhang, Jia Hu, Xin Xu, Li Chen\",\"doi\":\"10.1109/ICIEA.2016.7603775\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The goal of salient object detection is to estimate the regions which are most likely to attract human's visual attention. As an important image preprocessing procedure to reduce the computational complexity, salient object detection is still a challenging problem in computer vision. In this paper, we proposed a salient object detection model by integrating local and global superpixel contrast at multiple scales. Three features are computed to estimate the saliency of superpixel. Two optimization measures are utilized to refine the resulting saliency map. Extensive experiments with the state-of-the-art saliency models on three public datasets demonstrate the effectiveness of the proposed model.\",\"PeriodicalId\":283114,\"journal\":{\"name\":\"2016 IEEE 11th Conference on Industrial Electronics and Applications (ICIEA)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE 11th Conference on Industrial Electronics and Applications (ICIEA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIEA.2016.7603775\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 11th Conference on Industrial Electronics and Applications (ICIEA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIEA.2016.7603775","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

显著目标检测的目标是估计最可能吸引人类视觉注意的区域。作为降低计算复杂度的重要图像预处理步骤,显著目标检测一直是计算机视觉领域的难题。本文提出了一种融合局部和全局超像素对比度的多尺度显著目标检测模型。计算了三个特征来估计超像素的显著性。利用两种优化措施来改进得到的显著性图。在三个公共数据集上对最先进的显著性模型进行了大量实验,证明了所提出模型的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Salient object detection via multi-scale local-global superpixel contrast
The goal of salient object detection is to estimate the regions which are most likely to attract human's visual attention. As an important image preprocessing procedure to reduce the computational complexity, salient object detection is still a challenging problem in computer vision. In this paper, we proposed a salient object detection model by integrating local and global superpixel contrast at multiple scales. Three features are computed to estimate the saliency of superpixel. Two optimization measures are utilized to refine the resulting saliency map. Extensive experiments with the state-of-the-art saliency models on three public datasets demonstrate the effectiveness of the proposed model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The electric power source structure optimization based on capital investment efficiency Modeling, control and implementation of high step-up ratio IDDB converters for fuel cell applications Research of heat transfer characteristic for PMSM with two-way ventilation structure Experimental researches on the novel single-phase induction motor Adaptive similarity fusion strategy in stereo matching algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1