使用机器学习的校园位置预测和分析

Priyanka Shahane
{"title":"使用机器学习的校园位置预测和分析","authors":"Priyanka Shahane","doi":"10.1109/ESCI53509.2022.9758214","DOIUrl":null,"url":null,"abstract":"Campus placement is an activity of participating, identifying and hiring young talent for internships and entry level positions. Reputation and yearly admissions of the institute invariably depend upon the placements provided by the institute to the students. Therefore, most of the institutions, assiduously, try to boost their placement department in order to improve their organization on a full scale. Any assistance during this specific space can have a good impact on the institute's capability to position it's students. In this study, the target is to analyze student's placement data of last year and use it to determine the probability of campus placement of the present students. For this we have experimented with four different machine learning algorithms i.e. Logistic Regression, Decision Tree, K Nearest Neighbours and Random Forest.","PeriodicalId":436539,"journal":{"name":"2022 International Conference on Emerging Smart Computing and Informatics (ESCI)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Campus Placements Prediction & Analysis using Machine Learning\",\"authors\":\"Priyanka Shahane\",\"doi\":\"10.1109/ESCI53509.2022.9758214\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Campus placement is an activity of participating, identifying and hiring young talent for internships and entry level positions. Reputation and yearly admissions of the institute invariably depend upon the placements provided by the institute to the students. Therefore, most of the institutions, assiduously, try to boost their placement department in order to improve their organization on a full scale. Any assistance during this specific space can have a good impact on the institute's capability to position it's students. In this study, the target is to analyze student's placement data of last year and use it to determine the probability of campus placement of the present students. For this we have experimented with four different machine learning algorithms i.e. Logistic Regression, Decision Tree, K Nearest Neighbours and Random Forest.\",\"PeriodicalId\":436539,\"journal\":{\"name\":\"2022 International Conference on Emerging Smart Computing and Informatics (ESCI)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Conference on Emerging Smart Computing and Informatics (ESCI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ESCI53509.2022.9758214\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Emerging Smart Computing and Informatics (ESCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESCI53509.2022.9758214","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

校园实习是一项参与、识别和雇佣年轻人才从事实习和入门级职位的活动。学院的声誉和每年的录取总是取决于学院为学生提供的实习机会。因此,大多数机构都在努力扩大其就业部门,以全面改善其组织。在这个特定的空间里,任何帮助都可以对学院定位学生的能力产生良好的影响。在本研究中,目标是分析去年学生的安置数据,并利用它来确定当前学生的校园安置概率。为此,我们实验了四种不同的机器学习算法,即逻辑回归、决策树、K近邻和随机森林。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Campus Placements Prediction & Analysis using Machine Learning
Campus placement is an activity of participating, identifying and hiring young talent for internships and entry level positions. Reputation and yearly admissions of the institute invariably depend upon the placements provided by the institute to the students. Therefore, most of the institutions, assiduously, try to boost their placement department in order to improve their organization on a full scale. Any assistance during this specific space can have a good impact on the institute's capability to position it's students. In this study, the target is to analyze student's placement data of last year and use it to determine the probability of campus placement of the present students. For this we have experimented with four different machine learning algorithms i.e. Logistic Regression, Decision Tree, K Nearest Neighbours and Random Forest.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Maximum Response Mechanism in Vehicular Cooperative Caching for C-V2X Networks A Modified Multiband Antenna for 5G Communication Deep Learning-Based Comparative Study to Detect Polyp Removal in Endoscopic Images A Multiple Stage Deep Learning Model for NID in MANETs Automated Diagnosis of Pneumonia through Capsule Network in conjunction with ResNet50v2 model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1