{"title":"低成本类金刚石(DLC)薄膜:从学术到工业的纳米技术转移","authors":"Professor Elvira Williams","doi":"10.1109/NANOFIM.2015.8425348","DOIUrl":null,"url":null,"abstract":"This paper designs a robot rapid moving strategy based on curve model. The virtual target points are introduced into the path planning of the robot so that the robot can complete the task smoothly and quickly. We give the method to solve the curve model in detail. At the same time, the design of state feedback from the robot control model based on the turning radius is used to solve the practical error problem. Simulation experiments show that the design of virtual target points can not only make the robot complete the task faster, but also can be applied to multi-robot formation control. The real experiment shows that the curve model can correct the error through the robot state feedback and finally make the robots reach the target point successfully.","PeriodicalId":413629,"journal":{"name":"2015 1st Workshop on Nanotechnology in Instrumentation and Measurement (NANOFIM)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Low Cost Diamond-Like-Carbon (DLC) Thin Films: Nanotechnology Transfer from Academia to Industry\",\"authors\":\"Professor Elvira Williams\",\"doi\":\"10.1109/NANOFIM.2015.8425348\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper designs a robot rapid moving strategy based on curve model. The virtual target points are introduced into the path planning of the robot so that the robot can complete the task smoothly and quickly. We give the method to solve the curve model in detail. At the same time, the design of state feedback from the robot control model based on the turning radius is used to solve the practical error problem. Simulation experiments show that the design of virtual target points can not only make the robot complete the task faster, but also can be applied to multi-robot formation control. The real experiment shows that the curve model can correct the error through the robot state feedback and finally make the robots reach the target point successfully.\",\"PeriodicalId\":413629,\"journal\":{\"name\":\"2015 1st Workshop on Nanotechnology in Instrumentation and Measurement (NANOFIM)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 1st Workshop on Nanotechnology in Instrumentation and Measurement (NANOFIM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NANOFIM.2015.8425348\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 1st Workshop on Nanotechnology in Instrumentation and Measurement (NANOFIM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NANOFIM.2015.8425348","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Low Cost Diamond-Like-Carbon (DLC) Thin Films: Nanotechnology Transfer from Academia to Industry
This paper designs a robot rapid moving strategy based on curve model. The virtual target points are introduced into the path planning of the robot so that the robot can complete the task smoothly and quickly. We give the method to solve the curve model in detail. At the same time, the design of state feedback from the robot control model based on the turning radius is used to solve the practical error problem. Simulation experiments show that the design of virtual target points can not only make the robot complete the task faster, but also can be applied to multi-robot formation control. The real experiment shows that the curve model can correct the error through the robot state feedback and finally make the robots reach the target point successfully.