{"title":"基于亚奈奎斯特差分时空阵的联合频率和二维DOA恢复","authors":"A. A. Kumar, M. Chandra, P. Balamuralidhar","doi":"10.23919/EUSIPCO.2017.8081237","DOIUrl":null,"url":null,"abstract":"In this paper, joint frequency and 2-D direction of arrival (DOA) estimation at sub-Nyquist sampling rates of a multi-band signal (MBS) comprising of P disjoint narrowband signals is considered. Beginning with a standard uniform rectangular array (URA) consisting of M = Mx × My sensors, this paper proposes a simpler modification by adding a N — 1 delay channel network to only one of the sensor. A larger array is then formed by combining the sub-Nyquist sampled outputs of URA and the delay channel network, referred to as the difference space-time (DST) array. Towards estimating the joint frequency and 2-D DOA on this DST array, a new method utilizing the 3-D spatial smoothing for rank enhancement and a subspace algorithm based on ESPRIT is presented. Furthermore, it is shown that an ADC sampling frequency of fs ≥ B suffices, where B is the bandwidth of the narrow-band signal. With the proposed approach, it is shown that O(MN/4) frequencies and their 2-D DOAs can be estimated even when all frequencies alias to the same frequency due to sub-Nyquist sampling. Appropriate simulation results are also presented to corroborate these findings.","PeriodicalId":346811,"journal":{"name":"2017 25th European Signal Processing Conference (EUSIPCO)","volume":"84 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Joint frequency and 2-D DOA recovery with sub-Nyquist difference space-time array\",\"authors\":\"A. A. Kumar, M. Chandra, P. Balamuralidhar\",\"doi\":\"10.23919/EUSIPCO.2017.8081237\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, joint frequency and 2-D direction of arrival (DOA) estimation at sub-Nyquist sampling rates of a multi-band signal (MBS) comprising of P disjoint narrowband signals is considered. Beginning with a standard uniform rectangular array (URA) consisting of M = Mx × My sensors, this paper proposes a simpler modification by adding a N — 1 delay channel network to only one of the sensor. A larger array is then formed by combining the sub-Nyquist sampled outputs of URA and the delay channel network, referred to as the difference space-time (DST) array. Towards estimating the joint frequency and 2-D DOA on this DST array, a new method utilizing the 3-D spatial smoothing for rank enhancement and a subspace algorithm based on ESPRIT is presented. Furthermore, it is shown that an ADC sampling frequency of fs ≥ B suffices, where B is the bandwidth of the narrow-band signal. With the proposed approach, it is shown that O(MN/4) frequencies and their 2-D DOAs can be estimated even when all frequencies alias to the same frequency due to sub-Nyquist sampling. Appropriate simulation results are also presented to corroborate these findings.\",\"PeriodicalId\":346811,\"journal\":{\"name\":\"2017 25th European Signal Processing Conference (EUSIPCO)\",\"volume\":\"84 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 25th European Signal Processing Conference (EUSIPCO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/EUSIPCO.2017.8081237\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 25th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/EUSIPCO.2017.8081237","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Joint frequency and 2-D DOA recovery with sub-Nyquist difference space-time array
In this paper, joint frequency and 2-D direction of arrival (DOA) estimation at sub-Nyquist sampling rates of a multi-band signal (MBS) comprising of P disjoint narrowband signals is considered. Beginning with a standard uniform rectangular array (URA) consisting of M = Mx × My sensors, this paper proposes a simpler modification by adding a N — 1 delay channel network to only one of the sensor. A larger array is then formed by combining the sub-Nyquist sampled outputs of URA and the delay channel network, referred to as the difference space-time (DST) array. Towards estimating the joint frequency and 2-D DOA on this DST array, a new method utilizing the 3-D spatial smoothing for rank enhancement and a subspace algorithm based on ESPRIT is presented. Furthermore, it is shown that an ADC sampling frequency of fs ≥ B suffices, where B is the bandwidth of the narrow-band signal. With the proposed approach, it is shown that O(MN/4) frequencies and their 2-D DOAs can be estimated even when all frequencies alias to the same frequency due to sub-Nyquist sampling. Appropriate simulation results are also presented to corroborate these findings.