无轴承直线电机的节能控制

Reza Hosseinzadeh, F. Martin, M. Hinkkanen
{"title":"无轴承直线电机的节能控制","authors":"Reza Hosseinzadeh, F. Martin, M. Hinkkanen","doi":"10.1109/ICM54990.2023.10102047","DOIUrl":null,"url":null,"abstract":"This paper presents a method to minimize the resistive losses in bearingless linear motors. A minimization algorithm is developed for calculating reference currents for a range of reference forces while the effect of spatial harmonics on force production is considered. The results from the algorithm are implemented in the form of lookup tables and artificial neural networks. A comparison between the two implementation methods is presented. Time-domain simulation results are given for motion control of a bearingless linear flux-switching permanent-magnet motor system while using optimal reference currents. Index Terms–Artificial neural networks, bearingless, energy efficiency, linear actuator, magnetic levitation, table lookup.","PeriodicalId":416176,"journal":{"name":"2023 IEEE International Conference on Mechatronics (ICM)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Energy-Efficient Control of Bearingless Linear Motors\",\"authors\":\"Reza Hosseinzadeh, F. Martin, M. Hinkkanen\",\"doi\":\"10.1109/ICM54990.2023.10102047\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a method to minimize the resistive losses in bearingless linear motors. A minimization algorithm is developed for calculating reference currents for a range of reference forces while the effect of spatial harmonics on force production is considered. The results from the algorithm are implemented in the form of lookup tables and artificial neural networks. A comparison between the two implementation methods is presented. Time-domain simulation results are given for motion control of a bearingless linear flux-switching permanent-magnet motor system while using optimal reference currents. Index Terms–Artificial neural networks, bearingless, energy efficiency, linear actuator, magnetic levitation, table lookup.\",\"PeriodicalId\":416176,\"journal\":{\"name\":\"2023 IEEE International Conference on Mechatronics (ICM)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE International Conference on Mechatronics (ICM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICM54990.2023.10102047\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Conference on Mechatronics (ICM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICM54990.2023.10102047","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种减小无轴承直线电机电阻损耗的方法。在考虑空间谐波对力产生的影响的情况下,提出了一种计算参考力范围内参考电流的最小化算法。该算法的结果以查找表和人工神经网络的形式实现。对两种实现方法进行了比较。给出了采用最优参考电流时无轴承线性磁通开关永磁电机系统运动控制的时域仿真结果。索引术语:人工神经网络,无轴承,能源效率,线性执行器,磁悬浮,查找表。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Energy-Efficient Control of Bearingless Linear Motors
This paper presents a method to minimize the resistive losses in bearingless linear motors. A minimization algorithm is developed for calculating reference currents for a range of reference forces while the effect of spatial harmonics on force production is considered. The results from the algorithm are implemented in the form of lookup tables and artificial neural networks. A comparison between the two implementation methods is presented. Time-domain simulation results are given for motion control of a bearingless linear flux-switching permanent-magnet motor system while using optimal reference currents. Index Terms–Artificial neural networks, bearingless, energy efficiency, linear actuator, magnetic levitation, table lookup.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Sliding Mode-Based Design of Unified Force and Position Control for Series Elastic Actuator Frequency-domain Analysis for Infinite Resets Systems* Intelligent Static Calibration of Industrial Robots using Artificial Bee Colony Algorithm Energy Localization in Spring-Motor Coupling System by Switching Mass Control Drowsy Driver Detection System For Poor Light Conditions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1