海上可再生能源存储:带有浮力引擎的CAES

Daniel Chidiebere Onwuchekwa
{"title":"海上可再生能源存储:带有浮力引擎的CAES","authors":"Daniel Chidiebere Onwuchekwa","doi":"10.1109/OSES.2019.8867353","DOIUrl":null,"url":null,"abstract":"This project is primarily focused on numerical analysis of an innovative technique that significantly improves the harvesting of energy from underwater compressed air energy storage (CAES) systems. The underwater CAES system stores compressed air at constant pressure in Energy Bags anchored at the bottom of the water body (1). This project presents the Buoyancy Engine, a renewable energy concept which generates short term electrical power sufficient to produce additional heat energy required for the expansion of the compressed air. The short term electrical energy is harvested and utilised to generate an electrical arc which is used to heat up charged molten salt to over 500°C (2), for a more efficient, controlled and extended electricity generation period. Molten salt energy storage systems have been known to produce electricity for 15 hours from only stored energy (3). This work shows the results of numerical investigations of the net buoyancy acting on ascending energy bags and the techniques for converting it to useful energy for the air expansion stage.","PeriodicalId":416860,"journal":{"name":"2019 Offshore Energy and Storage Summit (OSES)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Offshore Renewable Energy Storage: CAES with a Buoyancy Engine\",\"authors\":\"Daniel Chidiebere Onwuchekwa\",\"doi\":\"10.1109/OSES.2019.8867353\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This project is primarily focused on numerical analysis of an innovative technique that significantly improves the harvesting of energy from underwater compressed air energy storage (CAES) systems. The underwater CAES system stores compressed air at constant pressure in Energy Bags anchored at the bottom of the water body (1). This project presents the Buoyancy Engine, a renewable energy concept which generates short term electrical power sufficient to produce additional heat energy required for the expansion of the compressed air. The short term electrical energy is harvested and utilised to generate an electrical arc which is used to heat up charged molten salt to over 500°C (2), for a more efficient, controlled and extended electricity generation period. Molten salt energy storage systems have been known to produce electricity for 15 hours from only stored energy (3). This work shows the results of numerical investigations of the net buoyancy acting on ascending energy bags and the techniques for converting it to useful energy for the air expansion stage.\",\"PeriodicalId\":416860,\"journal\":{\"name\":\"2019 Offshore Energy and Storage Summit (OSES)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 Offshore Energy and Storage Summit (OSES)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/OSES.2019.8867353\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Offshore Energy and Storage Summit (OSES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/OSES.2019.8867353","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

该项目主要侧重于一种创新技术的数值分析,该技术可以显著提高水下压缩空气储能(CAES)系统的能量收集。水下CAES系统以恒定压力将压缩空气储存在锚定在水体底部的能量袋中(1)。该项目提出了浮力引擎,这是一种可再生能源概念,可以产生短期电力,足以产生压缩空气膨胀所需的额外热能。短期电能被收集并用于产生电弧,用于将带电的熔盐加热到500°C以上(2),以获得更有效、可控和延长的发电周期。已知熔盐储能系统仅从储存的能量就能产生15小时的电力(3)。这项工作显示了作用于上升能量袋的净浮力的数值研究结果,以及将其转化为空气膨胀阶段有用能量的技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Offshore Renewable Energy Storage: CAES with a Buoyancy Engine
This project is primarily focused on numerical analysis of an innovative technique that significantly improves the harvesting of energy from underwater compressed air energy storage (CAES) systems. The underwater CAES system stores compressed air at constant pressure in Energy Bags anchored at the bottom of the water body (1). This project presents the Buoyancy Engine, a renewable energy concept which generates short term electrical power sufficient to produce additional heat energy required for the expansion of the compressed air. The short term electrical energy is harvested and utilised to generate an electrical arc which is used to heat up charged molten salt to over 500°C (2), for a more efficient, controlled and extended electricity generation period. Molten salt energy storage systems have been known to produce electricity for 15 hours from only stored energy (3). This work shows the results of numerical investigations of the net buoyancy acting on ascending energy bags and the techniques for converting it to useful energy for the air expansion stage.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Evaluating the regional potential for emissions reduction using energy storage A comparative study of the Adiabatic Compressed Air Energy Storage (A-CAES) and Pumped Thermal Energy Storage (PTES) systems Modelling the effects of low-cost large-scale energy storage in the UK electricity network Present Status and Challenges for the Interaction between Offshore Wind Farms and Maritime Navigation in the Taiwan Strait Modeling of Multiterminal HVDC Offshore Grids with Renewable Energy and Storage Integration by Opensource Tools
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1