锂离子电池电压仿真分数阶模型的比较研究

R. Xiong, Jinpeng Tian
{"title":"锂离子电池电压仿真分数阶模型的比较研究","authors":"R. Xiong, Jinpeng Tian","doi":"10.1109/VTCSpring.2019.8746351","DOIUrl":null,"url":null,"abstract":"Lithium ion battery models play an important role in the battery management system of electric vehicles. Recently, fractional order modelling has drawn more attention due to the high accuracy and adjustable computational burden. Plenty of fractional order battery models have been proposed for voltage simulation and state estimation. Although they have been proved to be more accurate than traditional equivalent circuit models, there is no study comparing existing fractional order models. In this work, fractional order models used for voltage simulation and state estimation in literature have been summarized and compared. They are identified under different temperatures and ageing statuses, and the parameterized models are then validated using different profiles. The computational burden is also analyzed to find the best fractional order model. The results show that not the most complex fractional order models originating from impedance spectra fitting is not applicable for time domain simulation, and the difference between impedance spectra fitting and time domain simulation can’t be ignored.","PeriodicalId":134773,"journal":{"name":"2019 IEEE 89th Vehicular Technology Conference (VTC2019-Spring)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A Comparative Study on Fractional Order Models for Voltage Simulation of Lithium Ion Batteries\",\"authors\":\"R. Xiong, Jinpeng Tian\",\"doi\":\"10.1109/VTCSpring.2019.8746351\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Lithium ion battery models play an important role in the battery management system of electric vehicles. Recently, fractional order modelling has drawn more attention due to the high accuracy and adjustable computational burden. Plenty of fractional order battery models have been proposed for voltage simulation and state estimation. Although they have been proved to be more accurate than traditional equivalent circuit models, there is no study comparing existing fractional order models. In this work, fractional order models used for voltage simulation and state estimation in literature have been summarized and compared. They are identified under different temperatures and ageing statuses, and the parameterized models are then validated using different profiles. The computational burden is also analyzed to find the best fractional order model. The results show that not the most complex fractional order models originating from impedance spectra fitting is not applicable for time domain simulation, and the difference between impedance spectra fitting and time domain simulation can’t be ignored.\",\"PeriodicalId\":134773,\"journal\":{\"name\":\"2019 IEEE 89th Vehicular Technology Conference (VTC2019-Spring)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 89th Vehicular Technology Conference (VTC2019-Spring)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VTCSpring.2019.8746351\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 89th Vehicular Technology Conference (VTC2019-Spring)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VTCSpring.2019.8746351","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

锂离子电池模型在电动汽车电池管理系统中占有重要地位。近年来,分数阶建模以其精度高、计算量可调等优点受到越来越多的关注。许多分数阶电池模型已被提出用于电压仿真和状态估计。虽然它们已被证明比传统的等效电路模型更精确,但没有对现有分数阶模型进行比较的研究。本文对文献中用于电压仿真和状态估计的分数阶模型进行了总结和比较。在不同的温度和老化状态下对它们进行了识别,然后使用不同的剖面对参数化模型进行了验证。为了找到最佳的分数阶模型,还分析了计算量。结果表明,由阻抗谱拟合产生的非最复杂分数阶模型不适用于时域仿真,阻抗谱拟合与时域仿真之间的差异不可忽视。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Comparative Study on Fractional Order Models for Voltage Simulation of Lithium Ion Batteries
Lithium ion battery models play an important role in the battery management system of electric vehicles. Recently, fractional order modelling has drawn more attention due to the high accuracy and adjustable computational burden. Plenty of fractional order battery models have been proposed for voltage simulation and state estimation. Although they have been proved to be more accurate than traditional equivalent circuit models, there is no study comparing existing fractional order models. In this work, fractional order models used for voltage simulation and state estimation in literature have been summarized and compared. They are identified under different temperatures and ageing statuses, and the parameterized models are then validated using different profiles. The computational burden is also analyzed to find the best fractional order model. The results show that not the most complex fractional order models originating from impedance spectra fitting is not applicable for time domain simulation, and the difference between impedance spectra fitting and time domain simulation can’t be ignored.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
On the Multiplexing of Broadband Traffic and Grant-Free Ultra-Reliable Communication in Uplink On the Crucial Impact of Antennas and Diversity on BLE RSSI-Based Indoor Localization Multi-Connectivity for Ultra-Reliable Communication in Industrial Scenarios User Tracking for Access Control with Bluetooth Low Energy Incremental Hopping-Window Pose-Graph Fusion for Real-Time Vehicle Localization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1