Scotto:使用车载数据的实时驾驶员行为评分

Gorkem Kar, Batuhan Asiroglu, Fatih Sinan Bir
{"title":"Scotto:使用车载数据的实时驾驶员行为评分","authors":"Gorkem Kar, Batuhan Asiroglu, Fatih Sinan Bir","doi":"10.1109/VTCSpring.2019.8746461","DOIUrl":null,"url":null,"abstract":"This paper explores the minimal data-set to be collected from vehicles, to efficiently score drivers, using common vehicle sensors. This can lead to important results for insurance companies, advertisements and personalization. Existing work relies on several sensor information that are collected over a drive including acceleration/deceleration patterns or average trip duration. Vehicular companies make vehicular sensor information available to many external services. To explore how to score driving behaviors from such a data, we consider a system that interfaces to vehicle bus and executes supervised learning methods on this data. To facilitate this analysis, we collect in vehicle data from 20 drivers on a test route and have less than %10 error in our scoring algorithm.","PeriodicalId":134773,"journal":{"name":"2019 IEEE 89th Vehicular Technology Conference (VTC2019-Spring)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Scotto: Real-Time Driver Behavior Scoring Using In-Vehicle Data\",\"authors\":\"Gorkem Kar, Batuhan Asiroglu, Fatih Sinan Bir\",\"doi\":\"10.1109/VTCSpring.2019.8746461\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper explores the minimal data-set to be collected from vehicles, to efficiently score drivers, using common vehicle sensors. This can lead to important results for insurance companies, advertisements and personalization. Existing work relies on several sensor information that are collected over a drive including acceleration/deceleration patterns or average trip duration. Vehicular companies make vehicular sensor information available to many external services. To explore how to score driving behaviors from such a data, we consider a system that interfaces to vehicle bus and executes supervised learning methods on this data. To facilitate this analysis, we collect in vehicle data from 20 drivers on a test route and have less than %10 error in our scoring algorithm.\",\"PeriodicalId\":134773,\"journal\":{\"name\":\"2019 IEEE 89th Vehicular Technology Conference (VTC2019-Spring)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 89th Vehicular Technology Conference (VTC2019-Spring)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VTCSpring.2019.8746461\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 89th Vehicular Technology Conference (VTC2019-Spring)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VTCSpring.2019.8746461","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文探讨了从车辆收集的最小数据集,以便使用常见的车辆传感器有效地对驾驶员进行评分。这可以为保险公司、广告和个性化带来重要的结果。现有的工作依赖于在驾驶过程中收集的几个传感器信息,包括加速/减速模式或平均行程持续时间。汽车公司将汽车传感器信息提供给许多外部服务。为了探索如何从这样的数据中对驾驶行为进行评分,我们考虑了一个与车辆总线接口并对该数据执行监督学习方法的系统。为了便于分析,我们从一条测试路线上的20名司机那里收集了车辆数据,我们的评分算法的误差小于%10。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Scotto: Real-Time Driver Behavior Scoring Using In-Vehicle Data
This paper explores the minimal data-set to be collected from vehicles, to efficiently score drivers, using common vehicle sensors. This can lead to important results for insurance companies, advertisements and personalization. Existing work relies on several sensor information that are collected over a drive including acceleration/deceleration patterns or average trip duration. Vehicular companies make vehicular sensor information available to many external services. To explore how to score driving behaviors from such a data, we consider a system that interfaces to vehicle bus and executes supervised learning methods on this data. To facilitate this analysis, we collect in vehicle data from 20 drivers on a test route and have less than %10 error in our scoring algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
On the Multiplexing of Broadband Traffic and Grant-Free Ultra-Reliable Communication in Uplink On the Crucial Impact of Antennas and Diversity on BLE RSSI-Based Indoor Localization Multi-Connectivity for Ultra-Reliable Communication in Industrial Scenarios User Tracking for Access Control with Bluetooth Low Energy Incremental Hopping-Window Pose-Graph Fusion for Real-Time Vehicle Localization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1