简化了实时智能监控系统的多目标跟踪模型

W. Won, Man-Won Hawng, Yong-Seok Kim, Dong-Uk Kim
{"title":"简化了实时智能监控系统的多目标跟踪模型","authors":"W. Won, Man-Won Hawng, Yong-Seok Kim, Dong-Uk Kim","doi":"10.1109/ECTICON.2013.6559566","DOIUrl":null,"url":null,"abstract":"In this paper, we propose detection based simplified multiple object tracking model with handling stationary object detection and occlusion problem for real-time intelligent surveillance system. In order to solve detection of slow and stationary object problem in Gaussian Mixture Model(GMM) based adaptive background model, we presents controlling learning rate mechanism using tracked region information. And, the simple primitive multi-features are applied for real-time multiple object tracking. As well, we proposed modified moving average filter for predicting next position of moving object to handle occlusion problems. Computational and real-target experiment results show that the proposed model can successfully track moving object within 45ms per frame for 640×480 image size on Intel® Core(TM) i7 CPU 1.6GHz in a real indoor scene including occlusion situation.","PeriodicalId":273802,"journal":{"name":"2013 10th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Simplified multiple object tracking model for real-time intelligent surveillance system\",\"authors\":\"W. Won, Man-Won Hawng, Yong-Seok Kim, Dong-Uk Kim\",\"doi\":\"10.1109/ECTICON.2013.6559566\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose detection based simplified multiple object tracking model with handling stationary object detection and occlusion problem for real-time intelligent surveillance system. In order to solve detection of slow and stationary object problem in Gaussian Mixture Model(GMM) based adaptive background model, we presents controlling learning rate mechanism using tracked region information. And, the simple primitive multi-features are applied for real-time multiple object tracking. As well, we proposed modified moving average filter for predicting next position of moving object to handle occlusion problems. Computational and real-target experiment results show that the proposed model can successfully track moving object within 45ms per frame for 640×480 image size on Intel® Core(TM) i7 CPU 1.6GHz in a real indoor scene including occlusion situation.\",\"PeriodicalId\":273802,\"journal\":{\"name\":\"2013 10th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 10th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ECTICON.2013.6559566\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 10th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECTICON.2013.6559566","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种基于检测的简化多目标跟踪模型,该模型处理了实时智能监控系统中静止目标的检测和遮挡问题。为了解决基于高斯混合模型(GMM)的自适应背景模型中慢静止目标的检测问题,提出了利用跟踪区域信息控制学习率的机制。将简单的原语多特征应用于实时多目标跟踪。同时,我们提出了改进的移动平均滤波器来预测运动目标的下一个位置,以解决遮挡问题。计算和实目标实验结果表明,在包含遮挡的真实室内场景中,在Intel®Core(TM) i7 CPU 1.6GHz上,该模型可以在45ms /帧内成功地跟踪到640×480图像大小下的运动目标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Simplified multiple object tracking model for real-time intelligent surveillance system
In this paper, we propose detection based simplified multiple object tracking model with handling stationary object detection and occlusion problem for real-time intelligent surveillance system. In order to solve detection of slow and stationary object problem in Gaussian Mixture Model(GMM) based adaptive background model, we presents controlling learning rate mechanism using tracked region information. And, the simple primitive multi-features are applied for real-time multiple object tracking. As well, we proposed modified moving average filter for predicting next position of moving object to handle occlusion problems. Computational and real-target experiment results show that the proposed model can successfully track moving object within 45ms per frame for 640×480 image size on Intel® Core(TM) i7 CPU 1.6GHz in a real indoor scene including occlusion situation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
CPW-fed dual wideband using stub split-ring rectangular slot antenna A comparative study on different techniques for Thai part-of-speech tagging Bismuth doped ZnO films as anti-reflection coatings for solar cells Multi-channel Collection Tree Protocol for Wireless Sensor Networks Multi-robot coordination using switching of methods for deriving equilibrium in game theory
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1