关于表征静息状态大脑连通性的最具信息量的双相干切片

Ahmet Levent Kandemir, T. Özkurt
{"title":"关于表征静息状态大脑连通性的最具信息量的双相干切片","authors":"Ahmet Levent Kandemir, T. Özkurt","doi":"10.23919/EUSIPCO.2018.8553136","DOIUrl":null,"url":null,"abstract":"Bicoherence is a useful tool to detect nonlinear interactions within the brain with high computational cost. Latest attempts to reduce this computational cost suggest calculating a particular ‘slice’ of the bicoherence matrix. In this study, we investigate the information content of the bicoherence matrix in resting state. We use publicly available Human Connectome Project data in our calculations. We show that the most prominent information of the bicoherence matrix is concentrated on the main diagonal, i.e. $f_{1}=f_{2}$","PeriodicalId":303069,"journal":{"name":"2018 26th European Signal Processing Conference (EUSIPCO)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Most Informative Slice of Bicoherence That Characterizes Resting State Brain Connectivity\",\"authors\":\"Ahmet Levent Kandemir, T. Özkurt\",\"doi\":\"10.23919/EUSIPCO.2018.8553136\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bicoherence is a useful tool to detect nonlinear interactions within the brain with high computational cost. Latest attempts to reduce this computational cost suggest calculating a particular ‘slice’ of the bicoherence matrix. In this study, we investigate the information content of the bicoherence matrix in resting state. We use publicly available Human Connectome Project data in our calculations. We show that the most prominent information of the bicoherence matrix is concentrated on the main diagonal, i.e. $f_{1}=f_{2}$\",\"PeriodicalId\":303069,\"journal\":{\"name\":\"2018 26th European Signal Processing Conference (EUSIPCO)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 26th European Signal Processing Conference (EUSIPCO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/EUSIPCO.2018.8553136\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 26th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/EUSIPCO.2018.8553136","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

双相干是检测脑内非线性相互作用的有效工具,但计算成本较高。为了减少这种计算成本,最近的尝试建议计算双相干矩阵的特定“切片”。在这项研究中,我们研究了静息状态下双相干矩阵的信息含量。我们在计算中使用了公开的人类连接体项目数据。我们发现双相干矩阵最突出的信息集中在主对角线上,即$f_{1}=f_{2}$
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
On the Most Informative Slice of Bicoherence That Characterizes Resting State Brain Connectivity
Bicoherence is a useful tool to detect nonlinear interactions within the brain with high computational cost. Latest attempts to reduce this computational cost suggest calculating a particular ‘slice’ of the bicoherence matrix. In this study, we investigate the information content of the bicoherence matrix in resting state. We use publicly available Human Connectome Project data in our calculations. We show that the most prominent information of the bicoherence matrix is concentrated on the main diagonal, i.e. $f_{1}=f_{2}$
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Missing Sample Estimation Based on High-Order Sparse Linear Prediction for Audio Signals Multi-Shot Single Sensor Light Field Camera Using a Color Coded Mask Knowledge-Aided Normalized Iterative Hard Thresholding Algorithms for Sparse Recovery Two-Step Hybrid Multiuser Equalizer for Sub-Connected mmWave Massive MIMO SC-FDMA Systems How Much Will Tiny IoT Nodes Profit from Massive Base Station Arrays?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1