使用机器学习对欧洲学校教师的性别预测:初步结果

C. Verma, A. Tarawneh, Z. Illés, Veronika Stoffová, S. Dahiya
{"title":"使用机器学习对欧洲学校教师的性别预测:初步结果","authors":"C. Verma, A. Tarawneh, Z. Illés, Veronika Stoffová, S. Dahiya","doi":"10.1109/IADCC.2018.8692100","DOIUrl":null,"url":null,"abstract":"An experiential study is conducted to solve binary classification problem on big dataset of European Survey of Schools: ICT in Education (known as ESSIE) using IBM modeler version 18.1. The survey was conducted by ESSIE at various levels [1]-[3] of schools ISCED (International Standard Classification of Education). To predict the gender of teachers based on their answers, the authors applied 4 supervised machine learning algorithms filtering out of 12 classifiers using auto classifiers on ISCED-1 and ISCED-2 level of schools. Out of total 158 attributes, self-reduction and auto classifier stabilized only 134 attributes for the Bayesian Network (BN) and Random Tree (RT) at level-1 and 134 attributes for logistic regression and 41 attributes for Decision Tree (C5) at level-2. The MissingValue filter of Weka 3.8.1 tool handled well 55641 in ISCED-2 level and 19415 at the ISCED-1 level and normalization is also applied as well. The outcomes of the study reveal that decision tree (C5) classifier outperformed the logistic regression (LR) after feature extraction at ISCED-2 level schools and Random Tree classifier predicted more accurately gender of the teacher as compare to the Bayesian Network at level-1 schools. Further, presented predictive models stabilized 134 attributes with 2926 instances for predict gender of teachers of level-1 schools and 134 attributes with 7542 instances for level-2 schools.","PeriodicalId":365713,"journal":{"name":"2018 IEEE 8th International Advance Computing Conference (IACC)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":"{\"title\":\"Gender Prediction of the European School’s Teachers Using Machine Learning: Preliminary Results\",\"authors\":\"C. Verma, A. Tarawneh, Z. Illés, Veronika Stoffová, S. Dahiya\",\"doi\":\"10.1109/IADCC.2018.8692100\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An experiential study is conducted to solve binary classification problem on big dataset of European Survey of Schools: ICT in Education (known as ESSIE) using IBM modeler version 18.1. The survey was conducted by ESSIE at various levels [1]-[3] of schools ISCED (International Standard Classification of Education). To predict the gender of teachers based on their answers, the authors applied 4 supervised machine learning algorithms filtering out of 12 classifiers using auto classifiers on ISCED-1 and ISCED-2 level of schools. Out of total 158 attributes, self-reduction and auto classifier stabilized only 134 attributes for the Bayesian Network (BN) and Random Tree (RT) at level-1 and 134 attributes for logistic regression and 41 attributes for Decision Tree (C5) at level-2. The MissingValue filter of Weka 3.8.1 tool handled well 55641 in ISCED-2 level and 19415 at the ISCED-1 level and normalization is also applied as well. The outcomes of the study reveal that decision tree (C5) classifier outperformed the logistic regression (LR) after feature extraction at ISCED-2 level schools and Random Tree classifier predicted more accurately gender of the teacher as compare to the Bayesian Network at level-1 schools. Further, presented predictive models stabilized 134 attributes with 2926 instances for predict gender of teachers of level-1 schools and 134 attributes with 7542 instances for level-2 schools.\",\"PeriodicalId\":365713,\"journal\":{\"name\":\"2018 IEEE 8th International Advance Computing Conference (IACC)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"27\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 8th International Advance Computing Conference (IACC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IADCC.2018.8692100\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 8th International Advance Computing Conference (IACC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IADCC.2018.8692100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

摘要

利用IBM modeler 18.1版本对欧洲学校调查:ICT in Education (ESSIE)大数据集进行了二元分类问题的实证研究。该调查由ESSIE对ISCED(国际教育标准分类)的各级学校[1]-[3]进行。为了根据教师的答案预测教师的性别,作者在ISCED-1和ISCED-2级别的学校使用自动分类器,从12个分类器中过滤出4种监督机器学习算法。在总共158个属性中,自约简和自动分类器在第一级为贝叶斯网络(BN)和随机树(RT)稳定了134个属性,在第二级为逻辑回归稳定了134个属性,为决策树(C5)稳定了41个属性。Weka 3.8.1工具的MissingValue过滤器很好地处理了ISCED-2级别的55641和ISCED-1级别的19415,并且也应用了规范化。研究结果表明,在ISCED-2级学校,决策树(C5)分类器在特征提取后优于逻辑回归(LR),在一级学校,随机树分类器比贝叶斯网络更准确地预测了教师的性别。此外,所提出的预测模型稳定了134个属性(2926个实例)和134个属性(7542个实例)对一级学校教师性别的预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Gender Prediction of the European School’s Teachers Using Machine Learning: Preliminary Results
An experiential study is conducted to solve binary classification problem on big dataset of European Survey of Schools: ICT in Education (known as ESSIE) using IBM modeler version 18.1. The survey was conducted by ESSIE at various levels [1]-[3] of schools ISCED (International Standard Classification of Education). To predict the gender of teachers based on their answers, the authors applied 4 supervised machine learning algorithms filtering out of 12 classifiers using auto classifiers on ISCED-1 and ISCED-2 level of schools. Out of total 158 attributes, self-reduction and auto classifier stabilized only 134 attributes for the Bayesian Network (BN) and Random Tree (RT) at level-1 and 134 attributes for logistic regression and 41 attributes for Decision Tree (C5) at level-2. The MissingValue filter of Weka 3.8.1 tool handled well 55641 in ISCED-2 level and 19415 at the ISCED-1 level and normalization is also applied as well. The outcomes of the study reveal that decision tree (C5) classifier outperformed the logistic regression (LR) after feature extraction at ISCED-2 level schools and Random Tree classifier predicted more accurately gender of the teacher as compare to the Bayesian Network at level-1 schools. Further, presented predictive models stabilized 134 attributes with 2926 instances for predict gender of teachers of level-1 schools and 134 attributes with 7542 instances for level-2 schools.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Discovering Motifs in DNA Sequences: A Suffix Tree Based Approach Prediction Model for Automated Leaf Disease Detection & Analysis Blind navigation using ambient crowd analysis HUPM: Efficient High Utility Pattern Mining Algorithm for E-Business Algorithm to Quantify the Low and High Resolution HLA Matching in Renal Transplantation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1