{"title":"报纸热点话题检测","authors":"T. Cao, Tat-Huy Tran, Thanh-Thuy Luu","doi":"10.1145/3287921.3287965","DOIUrl":null,"url":null,"abstract":"Online newspaper nowadays is gradually replacing the traditional one and the variety of articles on newspaper motivated the need for capturing hot topics to give Internet users a shortcut to the hot news. A hot topic always reflects the people's concern in real life and has big impact not only on community but also in business. In this paper, we proposed a novel topic detection approach by applying Hierarchical Density-Based Spatial Clustering of Applications with Noise (HDBSCAN) on Vector Space Model (VSM) to solve the challenge in noisy data and Pearson product-moment correlation coefficient (PMCC) on high ranking keywords to identify topics behind keywords. The proposed approach is evaluated over a dataset of ten thousand of articles and the experimental results are competitive in term of precision with other state-of-the-art methods.","PeriodicalId":448008,"journal":{"name":"Proceedings of the 9th International Symposium on Information and Communication Technology","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Hot Topic Detection on Newspaper\",\"authors\":\"T. Cao, Tat-Huy Tran, Thanh-Thuy Luu\",\"doi\":\"10.1145/3287921.3287965\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Online newspaper nowadays is gradually replacing the traditional one and the variety of articles on newspaper motivated the need for capturing hot topics to give Internet users a shortcut to the hot news. A hot topic always reflects the people's concern in real life and has big impact not only on community but also in business. In this paper, we proposed a novel topic detection approach by applying Hierarchical Density-Based Spatial Clustering of Applications with Noise (HDBSCAN) on Vector Space Model (VSM) to solve the challenge in noisy data and Pearson product-moment correlation coefficient (PMCC) on high ranking keywords to identify topics behind keywords. The proposed approach is evaluated over a dataset of ten thousand of articles and the experimental results are competitive in term of precision with other state-of-the-art methods.\",\"PeriodicalId\":448008,\"journal\":{\"name\":\"Proceedings of the 9th International Symposium on Information and Communication Technology\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 9th International Symposium on Information and Communication Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3287921.3287965\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 9th International Symposium on Information and Communication Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3287921.3287965","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Online newspaper nowadays is gradually replacing the traditional one and the variety of articles on newspaper motivated the need for capturing hot topics to give Internet users a shortcut to the hot news. A hot topic always reflects the people's concern in real life and has big impact not only on community but also in business. In this paper, we proposed a novel topic detection approach by applying Hierarchical Density-Based Spatial Clustering of Applications with Noise (HDBSCAN) on Vector Space Model (VSM) to solve the challenge in noisy data and Pearson product-moment correlation coefficient (PMCC) on high ranking keywords to identify topics behind keywords. The proposed approach is evaluated over a dataset of ten thousand of articles and the experimental results are competitive in term of precision with other state-of-the-art methods.