使用星型耦合路由器增强CAN系统的安全性

R. Kammerer, Bernhard Frömel, Armin Wasicek
{"title":"使用星型耦合路由器增强CAN系统的安全性","authors":"R. Kammerer, Bernhard Frömel, Armin Wasicek","doi":"10.1109/SIES.2012.6356590","DOIUrl":null,"url":null,"abstract":"Controller Area Network (CAN) is the most widely used protocol in the automotive domain. Bus-based CAN does not provide any security mechanisms to counter manipulations like eavesdropping, fabrication of messages, or denial-of-service attacks. The vulnerabilities in bus-based CAN are alarming, because safety-critical subsystems (e.g., the power train) often deploy a CAN bus, and hence a failure propagation from the security domain to the safety domain can take place. In this paper we propose a star coupling router and a trust model for this router to overcome some of the security deficiencies present in bus-based CAN systems. The CAN router establishes a partitioning of a CAN bus into separate CAN segments and allows to rigorously check the traffic within the CAN system, including the value and time domains. We evaluate the introduced trust model on a prototype implementation of the CAN router by performing attacks that would be successful on classic bus-based CAN, but are detected and contained on router-based CAN. The router can consequently increase the security in automotive applications and render some of the attacks described in the literature (e.g., fuzzying attack) on a car useless. Since the CAN router offers ports that are compatible to standard CAN, the router can be used to increase the security of legacy CAN based systems.","PeriodicalId":219258,"journal":{"name":"7th IEEE International Symposium on Industrial Embedded Systems (SIES'12)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Enhancing security in CAN systems using a star coupling router\",\"authors\":\"R. Kammerer, Bernhard Frömel, Armin Wasicek\",\"doi\":\"10.1109/SIES.2012.6356590\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Controller Area Network (CAN) is the most widely used protocol in the automotive domain. Bus-based CAN does not provide any security mechanisms to counter manipulations like eavesdropping, fabrication of messages, or denial-of-service attacks. The vulnerabilities in bus-based CAN are alarming, because safety-critical subsystems (e.g., the power train) often deploy a CAN bus, and hence a failure propagation from the security domain to the safety domain can take place. In this paper we propose a star coupling router and a trust model for this router to overcome some of the security deficiencies present in bus-based CAN systems. The CAN router establishes a partitioning of a CAN bus into separate CAN segments and allows to rigorously check the traffic within the CAN system, including the value and time domains. We evaluate the introduced trust model on a prototype implementation of the CAN router by performing attacks that would be successful on classic bus-based CAN, but are detected and contained on router-based CAN. The router can consequently increase the security in automotive applications and render some of the attacks described in the literature (e.g., fuzzying attack) on a car useless. Since the CAN router offers ports that are compatible to standard CAN, the router can be used to increase the security of legacy CAN based systems.\",\"PeriodicalId\":219258,\"journal\":{\"name\":\"7th IEEE International Symposium on Industrial Embedded Systems (SIES'12)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"7th IEEE International Symposium on Industrial Embedded Systems (SIES'12)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SIES.2012.6356590\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"7th IEEE International Symposium on Industrial Embedded Systems (SIES'12)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIES.2012.6356590","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

控制器区域网络(CAN)是汽车领域中应用最广泛的协议。基于总线的CAN不提供任何安全机制来对抗窃听、伪造消息或拒绝服务攻击等操作。基于总线的CAN的漏洞令人担忧,因为安全关键子系统(例如,动力系统)经常部署CAN总线,因此可能发生从安全域到安全域的故障传播。为了克服基于总线的CAN系统存在的一些安全缺陷,本文提出了一种星型耦合路由器及其信任模型。CAN路由器将CAN总线划分为单独的CAN段,并允许严格检查CAN系统内的流量,包括值域和时间域。我们通过执行攻击来评估在CAN路由器的原型实现上引入的信任模型,这些攻击在经典的基于总线的CAN上是成功的,但在基于路由器的CAN上被检测和包含。因此,路由器可以提高汽车应用程序的安全性,并使文献中描述的一些针对汽车的攻击(例如,模糊攻击)变得无用。由于CAN路由器提供了与标准CAN兼容的端口,因此该路由器可用于提高基于CAN的传统系统的安全性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Enhancing security in CAN systems using a star coupling router
Controller Area Network (CAN) is the most widely used protocol in the automotive domain. Bus-based CAN does not provide any security mechanisms to counter manipulations like eavesdropping, fabrication of messages, or denial-of-service attacks. The vulnerabilities in bus-based CAN are alarming, because safety-critical subsystems (e.g., the power train) often deploy a CAN bus, and hence a failure propagation from the security domain to the safety domain can take place. In this paper we propose a star coupling router and a trust model for this router to overcome some of the security deficiencies present in bus-based CAN systems. The CAN router establishes a partitioning of a CAN bus into separate CAN segments and allows to rigorously check the traffic within the CAN system, including the value and time domains. We evaluate the introduced trust model on a prototype implementation of the CAN router by performing attacks that would be successful on classic bus-based CAN, but are detected and contained on router-based CAN. The router can consequently increase the security in automotive applications and render some of the attacks described in the literature (e.g., fuzzying attack) on a car useless. Since the CAN router offers ports that are compatible to standard CAN, the router can be used to increase the security of legacy CAN based systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
On the timing analysis of the dynamic segment of FlexRay Miniaturized wireless sensor node for earthquake monitoring applications Performance evaluation of Chirp Spread Spectrum ranging for indoor embedded navigation systems On voting strategies for loosely synchronized dependable real-time systems Implementing hierarchical scheduling to support multi-mode system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1