访问控制决策的社区检测:分析在线社交网络中同质性和信息扩散的作用

Q1 Social Sciences Online Social Networks and Media Pub Date : 2022-05-01 DOI:10.1016/j.osnem.2022.100203
Nicolás E. Díaz Ferreyra , Tobias Hecking , Esma Aïmeur , Maritta Heisel , H. Ulrich Hoppe
{"title":"访问控制决策的社区检测:分析在线社交网络中同质性和信息扩散的作用","authors":"Nicolás E. Díaz Ferreyra ,&nbsp;Tobias Hecking ,&nbsp;Esma Aïmeur ,&nbsp;Maritta Heisel ,&nbsp;H. Ulrich Hoppe","doi":"10.1016/j.osnem.2022.100203","DOIUrl":null,"url":null,"abstract":"<div><p>Access-Control Lists (ACLs) (a.k.a. “friend lists”) are one of the most important privacy features of Online Social Networks (OSNs) as they allow users to restrict the audience of their publications. Nevertheless, creating and maintaining custom ACLs can introduce a high cognitive burden on average OSNs users since it normally requires assessing the trustworthiness of a large number of contacts. In principle, community detection algorithms can be leveraged to support the generation of ACLs by mapping a set of examples (i.e. contacts labelled as “untrusted”) to the emerging communities inside the user’s ego-network. However, unlike users’ access-control preferences, traditional community-detection algorithms do not take the <em>homophily</em> characteristics of such communities into account (i.e. attributes shared among members). Consequently, this strategy may lead to inaccurate ACL configurations and privacy breaches under certain homophily scenarios. This work investigates the use of community-detection algorithms for the automatic generation of ACLs in OSNs. Particularly, it analyses the performance of the aforementioned approach under different homophily conditions through a simulation model. Furthermore, since private information may reach the scope of untrusted recipients through the re-sharing affordances of OSNs, information diffusion processes are also modelled and taken explicitly into account. Altogether, the removal of gatekeeper nodes is further explored as a strategy to counteract unwanted data dissemination.</p></div>","PeriodicalId":52228,"journal":{"name":"Online Social Networks and Media","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2468696422000076/pdfft?md5=75c4fc7d96a2eb8f7b982d6070762c80&pid=1-s2.0-S2468696422000076-main.pdf","citationCount":"1","resultStr":"{\"title\":\"Community detection for access-control decisions: Analysing the role of homophily and information diffusion in Online Social Networks\",\"authors\":\"Nicolás E. Díaz Ferreyra ,&nbsp;Tobias Hecking ,&nbsp;Esma Aïmeur ,&nbsp;Maritta Heisel ,&nbsp;H. Ulrich Hoppe\",\"doi\":\"10.1016/j.osnem.2022.100203\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Access-Control Lists (ACLs) (a.k.a. “friend lists”) are one of the most important privacy features of Online Social Networks (OSNs) as they allow users to restrict the audience of their publications. Nevertheless, creating and maintaining custom ACLs can introduce a high cognitive burden on average OSNs users since it normally requires assessing the trustworthiness of a large number of contacts. In principle, community detection algorithms can be leveraged to support the generation of ACLs by mapping a set of examples (i.e. contacts labelled as “untrusted”) to the emerging communities inside the user’s ego-network. However, unlike users’ access-control preferences, traditional community-detection algorithms do not take the <em>homophily</em> characteristics of such communities into account (i.e. attributes shared among members). Consequently, this strategy may lead to inaccurate ACL configurations and privacy breaches under certain homophily scenarios. This work investigates the use of community-detection algorithms for the automatic generation of ACLs in OSNs. Particularly, it analyses the performance of the aforementioned approach under different homophily conditions through a simulation model. Furthermore, since private information may reach the scope of untrusted recipients through the re-sharing affordances of OSNs, information diffusion processes are also modelled and taken explicitly into account. Altogether, the removal of gatekeeper nodes is further explored as a strategy to counteract unwanted data dissemination.</p></div>\",\"PeriodicalId\":52228,\"journal\":{\"name\":\"Online Social Networks and Media\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2468696422000076/pdfft?md5=75c4fc7d96a2eb8f7b982d6070762c80&pid=1-s2.0-S2468696422000076-main.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Online Social Networks and Media\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2468696422000076\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Social Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Online Social Networks and Media","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468696422000076","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 1

摘要

访问控制列表(acl)(又名“朋友列表”)是在线社交网络(OSNs)最重要的隐私功能之一,因为它们允许用户限制其出版物的受众。然而,创建和维护自定义acl可能会给普通osn用户带来很高的认知负担,因为它通常需要评估大量联系人的可信度。原则上,社区检测算法可以通过将一组示例(即标记为“不可信”的联系人)映射到用户自我网络中的新兴社区来支持acl的生成。然而,与用户的访问控制偏好不同,传统的社区检测算法没有考虑到这些社区的同质性特征(即成员之间共享的属性)。因此,在某些同质性场景下,这种策略可能导致不准确的ACL配置和隐私泄露。这项工作研究了在osn中自动生成acl的社区检测算法的使用。特别地,通过仿真模型分析了上述方法在不同同态条件下的性能。此外,由于私有信息可能通过osn的再共享功能到达不受信任的接收者的范围,因此还对信息扩散过程进行了建模并明确考虑。总之,我们进一步探讨了删除守门人节点作为一种策略来抵制不必要的数据传播。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Community detection for access-control decisions: Analysing the role of homophily and information diffusion in Online Social Networks

Access-Control Lists (ACLs) (a.k.a. “friend lists”) are one of the most important privacy features of Online Social Networks (OSNs) as they allow users to restrict the audience of their publications. Nevertheless, creating and maintaining custom ACLs can introduce a high cognitive burden on average OSNs users since it normally requires assessing the trustworthiness of a large number of contacts. In principle, community detection algorithms can be leveraged to support the generation of ACLs by mapping a set of examples (i.e. contacts labelled as “untrusted”) to the emerging communities inside the user’s ego-network. However, unlike users’ access-control preferences, traditional community-detection algorithms do not take the homophily characteristics of such communities into account (i.e. attributes shared among members). Consequently, this strategy may lead to inaccurate ACL configurations and privacy breaches under certain homophily scenarios. This work investigates the use of community-detection algorithms for the automatic generation of ACLs in OSNs. Particularly, it analyses the performance of the aforementioned approach under different homophily conditions through a simulation model. Furthermore, since private information may reach the scope of untrusted recipients through the re-sharing affordances of OSNs, information diffusion processes are also modelled and taken explicitly into account. Altogether, the removal of gatekeeper nodes is further explored as a strategy to counteract unwanted data dissemination.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Online Social Networks and Media
Online Social Networks and Media Social Sciences-Communication
CiteScore
10.60
自引率
0.00%
发文量
32
审稿时长
44 days
期刊最新文献
How does user-generated content on Social Media affect stock predictions? A case study on GameStop Measuring centralization of online platforms through size and interconnection of communities Crowdsourcing the Mitigation of disinformation and misinformation: The case of spontaneous community-based moderation on Reddit GASCOM: Graph-based Attentive Semantic Context Modeling for Online Conversation Understanding The influence of coordinated behavior on toxicity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1