连接屋顶太阳能光伏的住宅的电源管理策略

Youngil Kim, Junda Zhao, Sungjin Kim, R. Harrington
{"title":"连接屋顶太阳能光伏的住宅的电源管理策略","authors":"Youngil Kim, Junda Zhao, Sungjin Kim, R. Harrington","doi":"10.1109/sustech.2017.8333535","DOIUrl":null,"url":null,"abstract":"Solar Photo Voltaic(PV) is one of the hottest trends of residential applications due to the increasing concerns about environmental sustainability and adopted feed-in tariffs in many countries. However, rooftop PV generates unstable output due to load variation and solar irradiation due to clouds and rain. To overcome this problem, this paper investigates operation mode control for residential housing which consists of the rooftop solar PV and Battery Energy Storage System(BESS) which could be regulated by a Charging/Discharging Controller incorporated into a power management strategy. It could operate on the DC-AC Converter which depends on the State of Charge (SOC%), real time of resident load, and real time Solar PV panel generation. The proposed strategy not only supports the grid power stability due to demand of the residential house loads but also compensates impacts of solar variations by passing clouds and other causes. This design and simulation output was verified by PSCAD/EMTDC Software.","PeriodicalId":231217,"journal":{"name":"2017 IEEE Conference on Technologies for Sustainability (SusTech)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Power management strategy for residential housing connected to the rooftop solar PV\",\"authors\":\"Youngil Kim, Junda Zhao, Sungjin Kim, R. Harrington\",\"doi\":\"10.1109/sustech.2017.8333535\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Solar Photo Voltaic(PV) is one of the hottest trends of residential applications due to the increasing concerns about environmental sustainability and adopted feed-in tariffs in many countries. However, rooftop PV generates unstable output due to load variation and solar irradiation due to clouds and rain. To overcome this problem, this paper investigates operation mode control for residential housing which consists of the rooftop solar PV and Battery Energy Storage System(BESS) which could be regulated by a Charging/Discharging Controller incorporated into a power management strategy. It could operate on the DC-AC Converter which depends on the State of Charge (SOC%), real time of resident load, and real time Solar PV panel generation. The proposed strategy not only supports the grid power stability due to demand of the residential house loads but also compensates impacts of solar variations by passing clouds and other causes. This design and simulation output was verified by PSCAD/EMTDC Software.\",\"PeriodicalId\":231217,\"journal\":{\"name\":\"2017 IEEE Conference on Technologies for Sustainability (SusTech)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE Conference on Technologies for Sustainability (SusTech)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/sustech.2017.8333535\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Conference on Technologies for Sustainability (SusTech)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/sustech.2017.8333535","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

由于对环境可持续性的日益关注和许多国家采用的上网电价,太阳能光伏(PV)成为住宅应用中最热门的趋势之一。然而,由于负荷变化和云层和雨水的太阳照射,屋顶光伏产生不稳定的输出。为了克服这一问题,本文研究了由屋顶太阳能光伏和电池储能系统(BESS)组成的住宅的运行模式控制,该住宅可以通过将充放电控制器纳入电源管理策略进行调节。它可以在DC-AC转换器上运行,这取决于充电状态(SOC%)、驻留负载的实时状态和实时太阳能光伏板发电。所提出的策略不仅支持住宅负荷所需的电网电力稳定,而且还补偿了通过云层和其他原因引起的太阳变化的影响。通过PSCAD/EMTDC软件对设计和仿真结果进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Power management strategy for residential housing connected to the rooftop solar PV
Solar Photo Voltaic(PV) is one of the hottest trends of residential applications due to the increasing concerns about environmental sustainability and adopted feed-in tariffs in many countries. However, rooftop PV generates unstable output due to load variation and solar irradiation due to clouds and rain. To overcome this problem, this paper investigates operation mode control for residential housing which consists of the rooftop solar PV and Battery Energy Storage System(BESS) which could be regulated by a Charging/Discharging Controller incorporated into a power management strategy. It could operate on the DC-AC Converter which depends on the State of Charge (SOC%), real time of resident load, and real time Solar PV panel generation. The proposed strategy not only supports the grid power stability due to demand of the residential house loads but also compensates impacts of solar variations by passing clouds and other causes. This design and simulation output was verified by PSCAD/EMTDC Software.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Strike-alert: Towards real-time, high resolution navigational software for whale avoidance A novel integration of hyper-spectral imaging and neural networks to process waste electrical and electronic plastics The emissions impacts of varied energy storage operational objectives across regions A novel distributed approach based reactive power support in microgrids Load-match-driven design improvement of solar PV systems and its impact on the grid with a case study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1